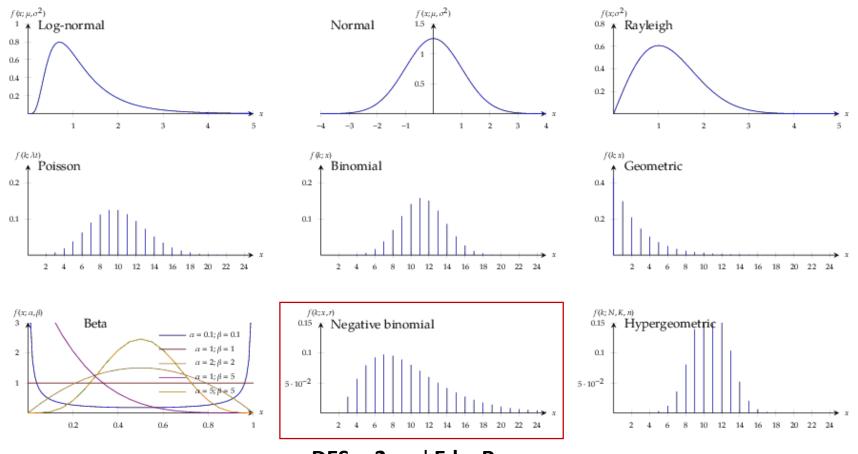


What is a GLM?

Generalized linear models (GLM) is a <u>flexible</u> generalization of ordinary *linear* regression that allows for response variables that have error distribution models other than a normal distribution.

Distribution	Support of distribution	Typical uses	Link name	Link function, $\mathbf{X}oldsymbol{eta}=g(\mu)$	Mean function	
Normal	real: $(-\infty, +\infty)$	Linear-response data	Identity	$\mathbf{X}oldsymbol{eta}=\mu$	$\mu=\mathbf{X}oldsymbol{eta}$	
Exponential	real: $(0,+\infty)$	Exponential-response	Negative inverse	$\mathbf{X}oldsymbol{eta} = -\mu^{-1}$	$\mu = -(\mathbf{X}\boldsymbol{eta})^{-1}$	
Gamma	10di. (0, +\infty)	data, scale parameters				
Inverse Gaussian	real: $(0,+\infty)$		Inverse squared	$\mathbf{X}oldsymbol{eta}=\mu^{-2}$	$\mu = (\mathbf{X}oldsymbol{eta})^{-1/2}$	
Poisson	integer: $0, 1, 2, \dots$	count of occurrences in fixed amount of time/space	Log	$\mathbf{X}oldsymbol{eta} = \ln(\mu)$	$\mu = \exp(\mathbf{X}oldsymbol{eta})$	
Bernoulli	integer: $\{0,1\}$	outcome of single yes/no occurrence		$\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{1-\mu} ight)$		
Binomial	integer: $0,1,\ldots,N$	count of # of "yes" occurrences out of N yes/no occurrences		$\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{n-\mu} ight)$		
	integer: $[0,K)$		Logit	$\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{1-\mu} ight)$	$\mu = rac{\exp(\mathbf{X}oldsymbol{eta})}{1+\exp(\mathbf{X}oldsymbol{eta})} = rac{1}{1+\exp(-\mathbf{X}oldsymbol{eta})}$	
Categorical	K-vector of integer: $[0,1]$, where exactly one element in the vector has the value 1	outcome of single K-way occurrence				
Multinomial	$ extit{ extit{ extit{K-vector of integer:}}} [0,N]$	count of occurrences of different types (1 K) out of N total K-way occurrences				

GLM Distributions



DESeq2 and **EdgeR** are improved negative-binomial GLMs

Neg. Binomial vs Poisson Distributions

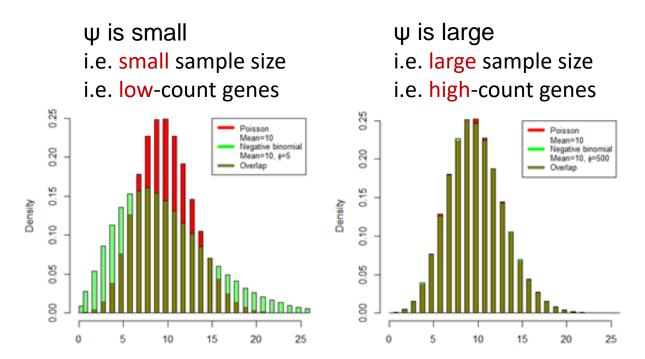


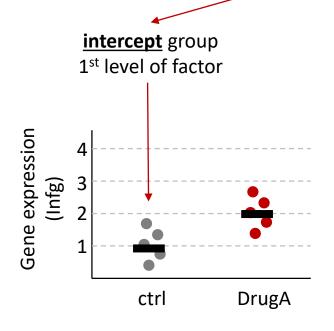
Figure shows that when ψ is small (e.g., ψ =5), a negative binomial distribution is more spread than a Poisson distribution with the same mean

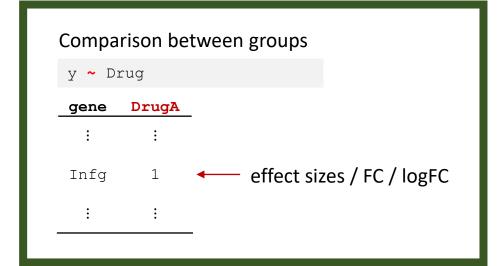
"in case overdispersion exists, Poisson regression model might not be appropriate."

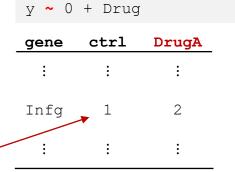
The negative binomial distribution will converge to a Poisson distribution for large Ψ.

GLM intuition

What if I have 2 groups?

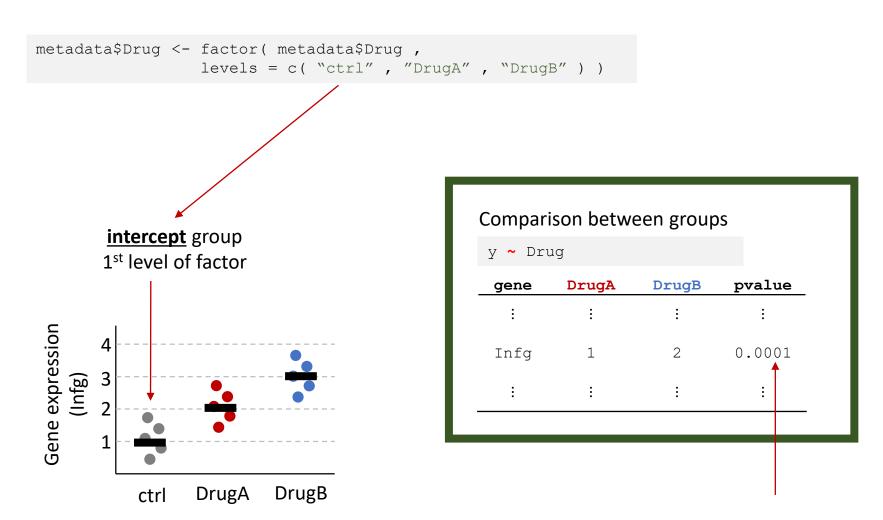






Also testing if base expression is different than zero (not common)

What if I have 3 groups?

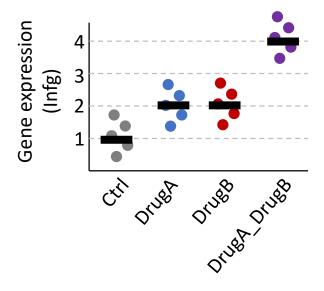


Testing if the gene is significant in any of the conditions listed.

What if I have 2 variable groups?

What you should **avoid** doing (whenever possible):

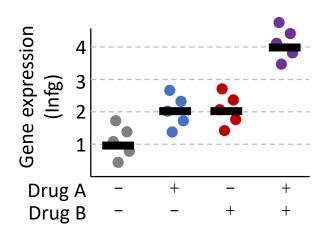
v ~ Drua

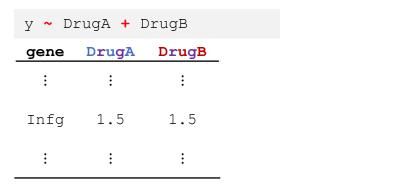


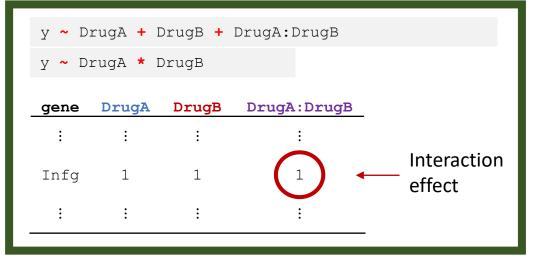
1	Diag			
gene	DrugA	DrugB	DrugA_DrugB	pvalue
:	:	:	:	:
Infg	1	1	3	0.0001
÷	:	÷	:	:

What if I have 2 variable groups?

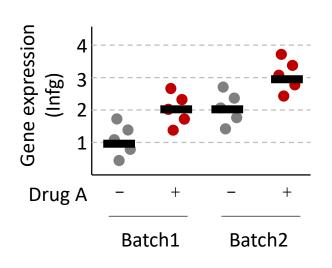
What you should do **instead** (whenever possible):

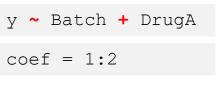


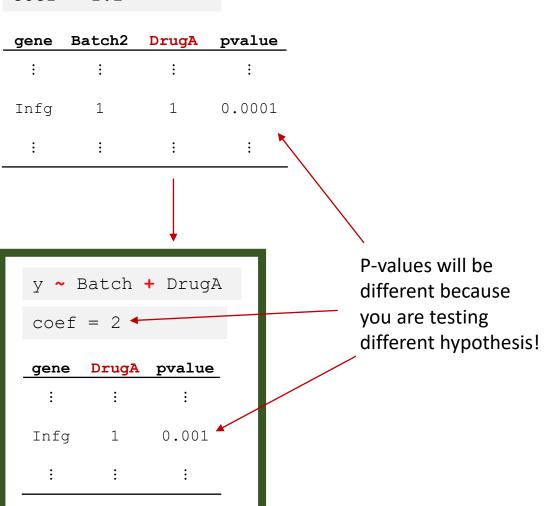




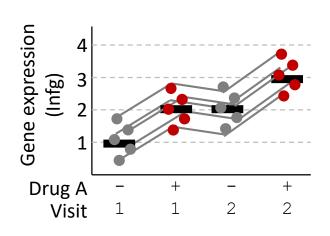
What if I have a batch effect?

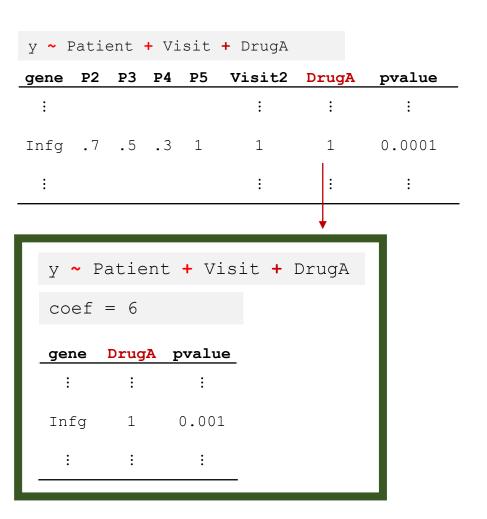






What if I have a individual-matched samples, plus a Drug treatment in two clinical visits?



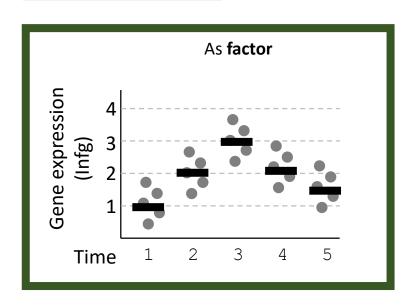


What if I have time series (or other continuous)?

IMPORTANT: set your <u>Time</u> variable as **factor**, so they are treated as categorical groups! e.g. by adding a string in the beginning

Instead of:

0 2 4 6 ...



gene	day2	day3	day4	day5
:	:	:	:	:
Infg	1	2	1	.5
:	÷	:	:	:

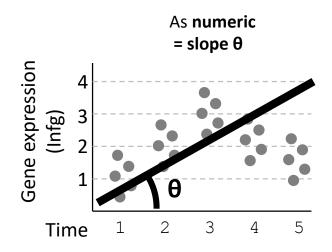
IMPORTANT: Other continuous covariates (such as **patient age**, **exposure time**, etc) should be used as **numeric** if they don't represent grouping variables.

What if I have time series (or other continuous)?

IMPORTANT: set your <u>Time</u> variable as **factor**, so they are treated as categorical groups! e.g. by adding a string in the beginning

Instead of:

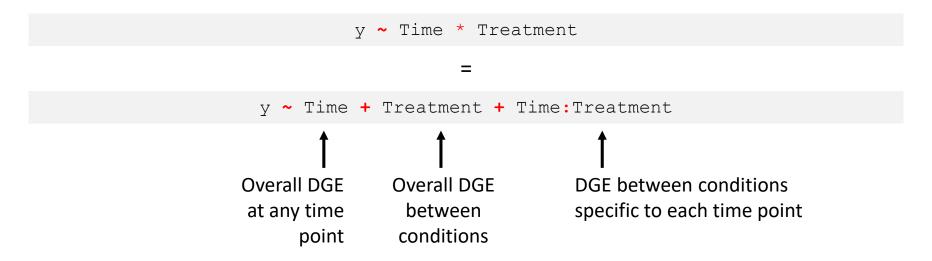
0 2 4 6 ...

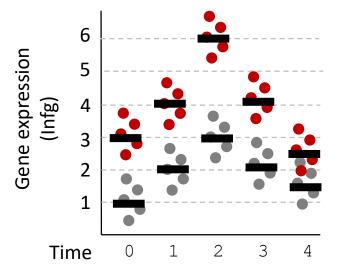


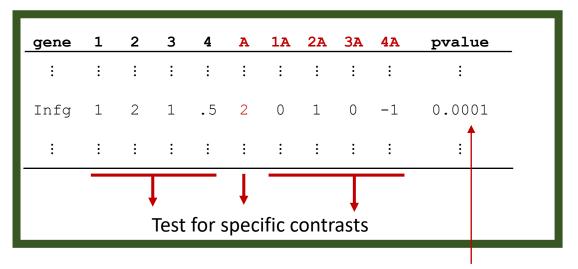
gene	day	_
:	:	
Infg	1	Means: "an increase of 1
:	:	per 1 day"

IMPORTANT: Other continuous covariates (such as **patient age**, **exposure time**, etc) should be used as **numeric** if they don't represent grouping variables.

What if I have time series and a treatment?

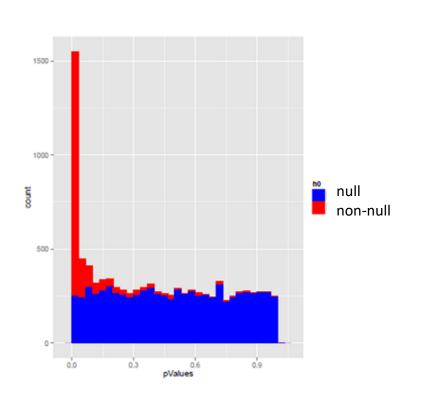




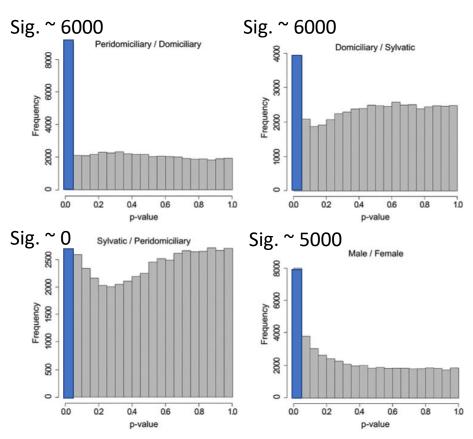


Testing if the gene is significant in any of the conditions listed.

By chance, at least 5% of of the "significant" (p>0.05) are likely NOT significant (false positives)

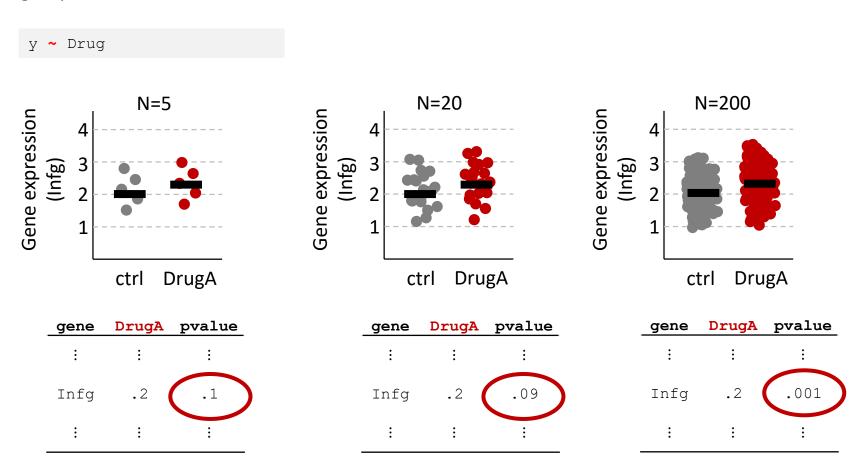


https://online.stat.psu.edu/stat555/node/81/



That's why we perform FDR correction on multiple testing, to adjust the p-values so that those 5% do not become significant at a **NULL** hypothesis.

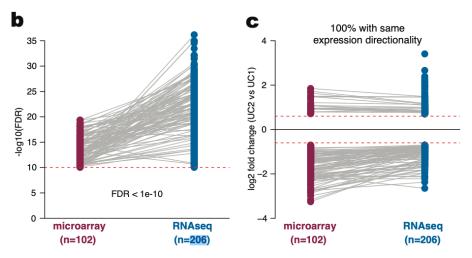
p-values represent the confidence you have in your mean measurement, and **NOT** that the groups are different!



That is why we <u>always</u> need to take the effect size (logFC) into consideration. FDR does **NOT** correct for this!

p-values represent the confidence you have in your mean measurement, and **NOT** that the groups are different!

p-values become more "significant" as you increase the sample size, but fold changes remain constant



Czarnewski et al (2019) Nat Communications

