NBS · SciLifeLab

Data Preprocessing

Workshop on RNA-Seq

Roy Francis and Nima Rafati NBIS, SciLifeLab

Raw data

• Raw count table

##		DSSd00_1	DSSd00_2	DSSd00_3	DSSd07_1	DSSd07_2	DSSd07_3
##	ENSMUSG00000102693	0	0	0	0	0	0
##	ENSMUSG0000064842	0	0	0	0	0	0
##	ENSMUSG0000051951	0	1	2	0	3	2
##	ENSMUSG00000102851	0	0	0	0	0	0
##	ENSMUSG00000103377	0	0	0	0	0	0
##	ENSMUSG00000104017	0	0	0	0	0	0

• Metadata

##		SampleName	SampleID	No	Model	Day	Group	Replicate
##	DSSd00_1	DSSd00_1	<i>KI_PC1606_01</i>	1	DSS	0	day00	1
##	DSSd00_2	DSSd00_2	<i>KI_PC1606_02</i>	2	DSS	0	day00	2
##	DSSd00_3	DSSd00_3	<i>KI_PC1606_03</i>	3	DSS	0	day00	3
##	DSSd07_1	DSSd07_1	<i>KI_PC1606_13</i>	13	DSS	7	day07	1
##	DSSd07_2	DSSd07_2	<i>KI_PC1606_14</i>	14	DSS	7	day07	2
##	DSSd07_3	DSSd07_3	<i>KI_PC1606_15</i>	15	DSS	7	day07	3

Filtering

• Remove genes and samples with low counts

```
cf1 <- cr[rowSums(cr>0) >= 3, ] # Keep rows/genes that have at least one read
cf2 <- cr[rowSums(cr>2) >= 3, ] # Keep rows/genes that have at least three reads
cf3 <- cr[rowSums(edgeR::cpm(cr)>5) >= 3, ] # need at least three samples to have cpm >
```

count/read per million (cpm/rpm): a normalized value for sequencing depth.

- Raw Method 1 Method 2 Method 3 0.20 0.20 0.15 3 Density Density 0.15 Density Density 5 Density 0.10 0.10 0.05 1 0.05 0.05 0 0.00 0.00 0.00 10 0 5 0 5 10 0 5 10 5 10 Log₁₀ Read counts Log₁₀ Read counts Log₁₀ Read counts Log₁₀ Read counts
- Inspect distribution

• Inspect the number of rows (genes) available after filtering

Raw: 55487, Method 1: 16099, Method 2: 12656, Method 3: 12496

- Removing technical biases in sequencing data (e.g. sequencing depth and gene length)
- Make counts comparable across samples

• Control for compositional bias Sample A Reads Sample B Reads Gene Y ## A B A tc B tc ## x 20 6 0.12 0.33 ## v 25 6 0.16 0.33 ## z 15 4 0.09 0.22 ## de 100 2 0.62 0.11

• Make counts comparable across features (genes). It can be useful for gene to gene comparisons.

Sample A Reads

##		counts	gene_length	norm_counts
##	X	50	10	5
##	у	25	5	5

• Bring counts to a human-friendly scale

Normalisation by library size

- Assumes total expression is the same under different experimental conditions
- Methods include TC, RPKM, FPKM, TPM
- RPKM, FPKM and TPM control for sequencing depth and gene length
- Total number of RPKM/FPKM normalized counts for each sample will be different, therefore, you cannot compare the normalized counts for each gene equally between samples.
- TPM is proportional to RPKM and enables better comparison between samples because total per sample sums to equal value

##		Α	В	len	A_rpm	В_грт	A_rpkm	B_rpkm	A_rpk	B_rpk	A_tpm	B_tpm
##	X	20	6	2000	408163	222222	204081.5	111111.0	10.00	3.0	<i>493827</i>	153846
##	У	25	6	4000	510204	222222	127551.0	55555.5	6.25	1.5	308642	76923
##	Ζ	4	15	1000	81633	555556	81633.0	555556.0	4.00	15.0	197531	769231
##	sum	<i>49</i>	27	7000	1000000	1000000	413265.5	722222.5	20.25	19.5	1000000	1000000

rpm = cpm.

Normalisation by distribution

- Assumes technical effects are same for DE and non-DE genes
- Assumes number of over and under-expressed genes are roughly same across conditions
- Corrects for compositional bias
- Methods include Q, UQ, M, RLE, TMM, MRN
- edgeR::calcNormFactors() implements TMM, TMMwsp, RLE & UQ
- **DESeq2::estimateSizeFactors()** implements relative log expression (RLE)
- Does not correct for gene length
- geTMM is gene length corrected TMM

 ##
 A
 B
 len
 ref
 A_ratio
 B_ratio
 A_mrn
 B_mrn

 ##
 x
 20
 6
 2000
 10.95
 1.83
 0.55
 10.928962
 10.90909

 ##
 y
 25
 6
 4000
 12.25
 2.04
 0.49
 13.661202
 10.90909

 ##
 z
 4
 15
 1000
 7.75
 0.52
 1.94
 2.185792
 27.27273

Normalisation by testing

- A more robust version of normalisation by distribution
- A set of non-DE genes are detected through hypothesis testing
- Tolerates a larger difference in number of over and under expressed genes between conditions
- Methods include PoissonSeq, DEGES

Normalisation using Controls

- Assumes controls are not affected by experimental condition and technical effects are similar to all other genes
- Useful in conditions with global shift in expression
- Controls could be house-keeping genes or spike-ins
- Methods include RUV, CLS

Stabilizing variance

- Variance is stabilised across the range of mean values
- Methods include VST, RLOG, VOOM
- For use in exploratory analyses. Not for DE.
- vst() and rlog() functions from *DESeq2*
- voom() function from *Limma* converts data to normal distribution

Recommendations

- Most tools use a mix of many different normalisations
- For DGE using DGE R packages (DESeq2, edgeR, Limma etc), use raw counts
- For visualisation (PCA, clustering, heatmaps etc), use VST or RLOG
- For own analysis with gene length correction, use TPM (maybe geTMM?)
- Custom solutions: spike-ins/house-keeping genes

Thank you. Questions?

R version 4.1.3 (2022-03-10) Platform: x86_64-pc-linux-gnu (64-bit) OS: Ubuntu 18.04.6 LTS

Built on : 15-Mar-2023 at 🕚 14:51:10 **2023 •** SciLifeLab • NBIS