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What is a GLM?

Generalized linear models (GLM) is a flexible generalization of ordinary linear
regression that allows for response variables that have error distribution
models other than a normal distribution.
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GLM Distributions

Fi gty Flap,of)
! 4 Log-normal Mormal 15
0
1
T
04
05
0z
= *
1 2 3 4 5 e R T 1 2 3 4
FikAn Fix)
Poisson Binomial
0z 0z
[iR] ‘ ‘ [iR] ‘ ‘
L.||‘ s n e
24 & B W0 12 14 16 18 M 2 M 2 4 & B W0 12 14 16 18 20 B M
FLLER]
05 4 Negative binomial
0
——— 5102 ‘ ‘ ‘
l‘\I__T | |||||II||._.__T
0z 04 T i 1 2 4 & B W0 12 14 16 18 0 B M

DESeq2 and EdgeR are
improved negative-
binomial GLMs
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Neg.Binomial vs Poisson Distributions

Dwansity

W is small Y is large
i.e. small sample size i.e. large sample size
i.e. low-count genes i.e. high-count genes
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Figure shows that when y is small (e.g., ¢ =5), a negative binomial
distribution is more spread than a Poisson distribution with the same mean

“in case overdispersion exists, Poisson regression model might not be
appropriate.”

The negative binomial distribution will
converge to a Poisson distribution for large

.

https://pulmonarychronicles.com/index.php/pulmonarychronicles/article/view/200/491



GLM intuition



What if | have 2 groups?

metadata$Drug <- factor( metadata$Drug ,
levels = c( “ctrl” , ”DrugA” ) )
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Also testing if base expression is
different than zero (not common)



What if | have 3 groups?

metadata$Drug <- factor( metadata$Drug ,
levels = c( “ctrl” , ”DrugA” , “DrugB” ) )
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Testing if the gene is significant
in any of the conditions listed.



What if | have 2 variable groups?

What you should avoid doing (whenever possible):

metadata$Drug <- factor( metadata$Drug ,
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What if | have 2 variable groups?

What you should do instead (whenever possible):

metadata$DrugA <- factor( metadata$Drugh ,
levels = c( “ctrl” , ”DrugA” ) )

metadata$DrugB <- factor( metadata$DrugB ,
levels = c¢c( “ctrl” , ”DrugB” ) )
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What if | have a batch effect?
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P-values will be
different because
you are testing
different hypothesis!
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What if | have a individual-matched samples, plus a
Drug treatment in two clinical visits?

y ~ Patient + Visit + DrugA
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What if | have time series (or other continuous)?

y ~ Time
IMPORTANT: set your Time variable as factor, so they are treated as categorical groups!
e.g. by adding a string in the beginning
“day00” “day02” “day04” “day06” ...
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0 2 4 6 ...

As factor

gene day2 day3 day4 day5

Infg 1 2 1 .5

c
9
(%]
(%]
)
| -
aQ
=
@)
w
c
]
O

IMPORTANT: Other continuous covariates (such as patient age , exposure time, etc)
should be used as numeric if they don’t represent grouping variables.
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What if | have time series (or other continuous)?

y ~ Time
IMPORTANT: set your Time variable as factor, so they are treated as categorical groups!
e.g. by adding a string in the beginning
“day00” “day02” “day04” “day06” ...

Instead of :
0 2 4 6 ...
As numeric
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IMPORTANT: Other continuous covariates (such as patient age , exposure time, etc)
should be used as numeric if they don’t represent grouping variables.
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What if | have time series and a treatment?

y ~ Time * Treatment

y ~ Time + Treatment + Time:Treatment
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A reminder on the meaning of p-values
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A reminder on the meaning of p-values

By chance, at least 5% of of the “significant” (p>0.05) are likely NOT significant
(false positives)
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That’s why we perform FDR correction on multiple testing, to adjust the p-values so that those

5% do not become significant at a NULL hypothesis.
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A reminder on the meaning of p-values

p-values represent the confidence you have in your mean measurement, and NOT that the
groups are different!
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That is why we always need to take the effect size (logFC) into consideration.
FDR does NOT correct for this!
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A reminder on the meaning of p-values

p-values represent the confidence you have in your mean measurement, and NOT that the
groups are different!

p-values become more “significant” as you increase the
sample size, but fold changes remain constant
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Czarnewski et al (2019) Nat Communications
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Thank you. Questions?

Paulo Czarnewski
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