NB SciLifeLab

Pseudo-aligners

RNA-seq data analysis

Johan Reimegård | 15-November-2021

Pseudo-aligners assigns read to a transcript

- Not the actual location...
 - It does it by matching k-mers between read and transcripts

k -mers are nucleotides of length k

- Oct4 is 1574 nt long (L = 1574)
- k 7 (k= 7)
- Oct4 will contain 1568 Kmers (L-k+1)
-CTTGGAACAAT.....
 - CTTGGAA
 - TTGGAAC
 - TGGAACA
 - GGAACAA
 - GAACAAT

Splits up a read into the same kmer size

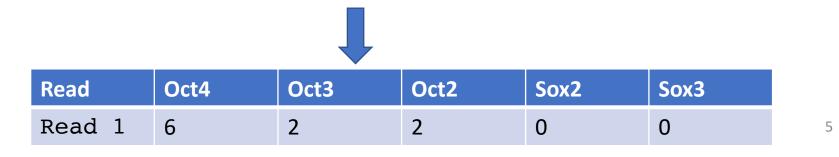
Read1 = CTTGGAACAAT

Kmer Read1

CTTGGAA

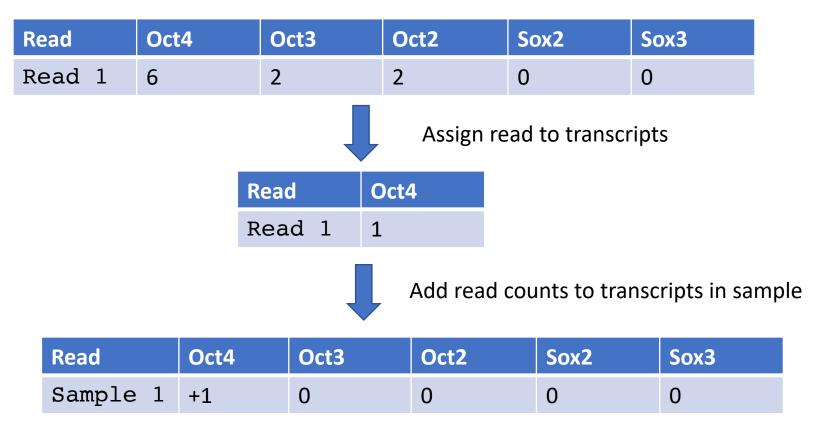
TTGGAAC

TGGAACA


GGAACAA

GAACAAT

ААСААТА


Checks in which transcripts the Kmers exist and sums them up

Kmer Read1	Kmer	Oct4	Oct3	Oct2	Sox2	Sox3
CTTGGAA	CTTGGAA	TRUE	FALSE	TRUE	FALSE	FALSE
TTGGAAC	TTGGAAC	TRUE	FALSE	TRUE	FALSE	FALSE
TGGAACA	TGGAACA	TRUE	FALSE	FALSE	FALSE	FALSE
GGAACAA	GGAACAA	TRUE	TRUE	FALSE	FALSE	FALSE
GAACAAT	GAACAAT	TRUE	TRUE	FALSE	FALSE	FALSE
ААСААТА	ААСААТА	TRUE	FALSE	FALSE	FALSE	FALSE

Assign the read to one or many transcript

Checks which of the transcripts the number of kmers matched is least likely to happen by chance and assign it to those transcript

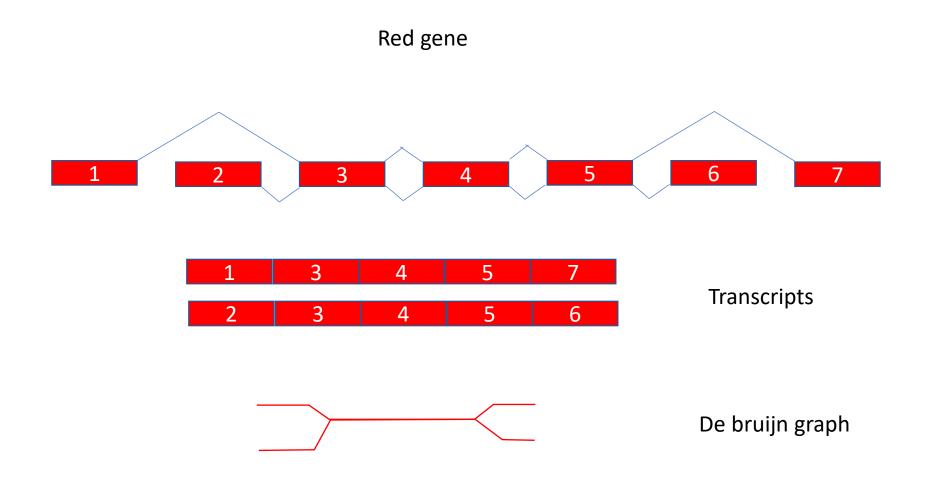
Redo the procedure for all reads

Read2 = GATACAGATAC 6 kmers of length 7

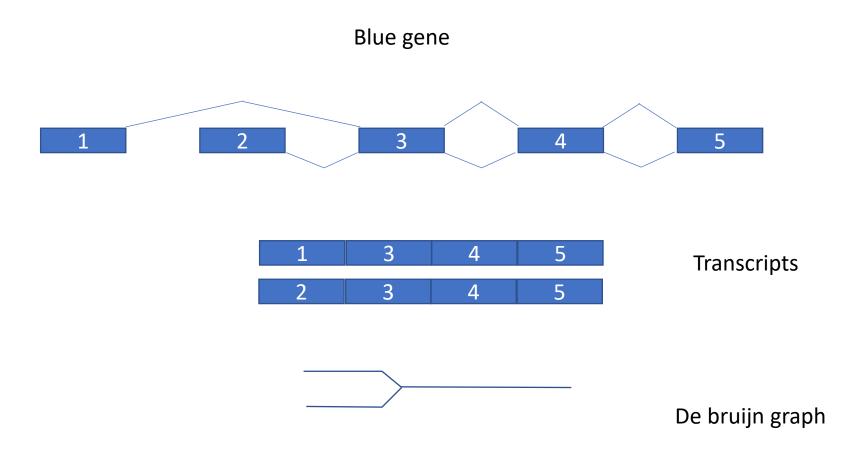
Read	Oct4	0	ct3	Oct2	S	ox2	Sox3	
Read 2	0	0		0	6	j	6	
		Assi	gn read	d to transcr	ipts			
		Read	d	Sox2	Sox3			
		Rea	d 2	1	1			
Ad				Add r	ead co	unts to trar	nscripts in sai	mpl
Read	0	ct4	Oct3	Oct2	2	Sox2	Sox3	
Sample	1 1		0	0		+1	+1	

But it takes time to look up so many k-mers

Real result from Kallisto

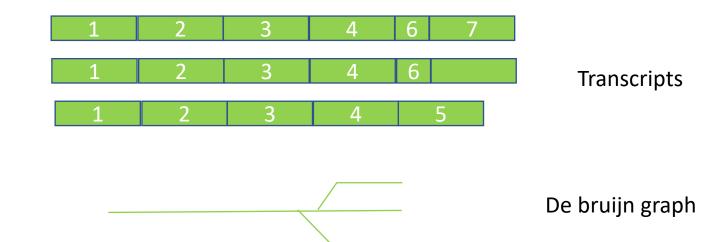

[quant]	fragment length distribution will be estimated from the
[index]	k-mer length: 31
[index]	number of targets: 173,259

[index] number of k-mers: 104,344,666

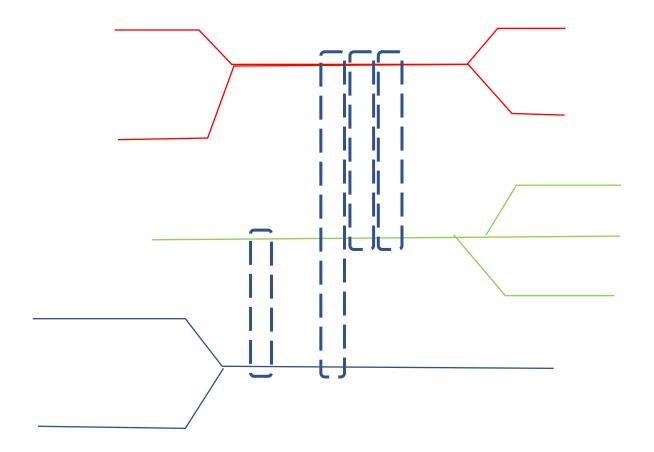

Speed up by identifying important k-mers to separate transcripts

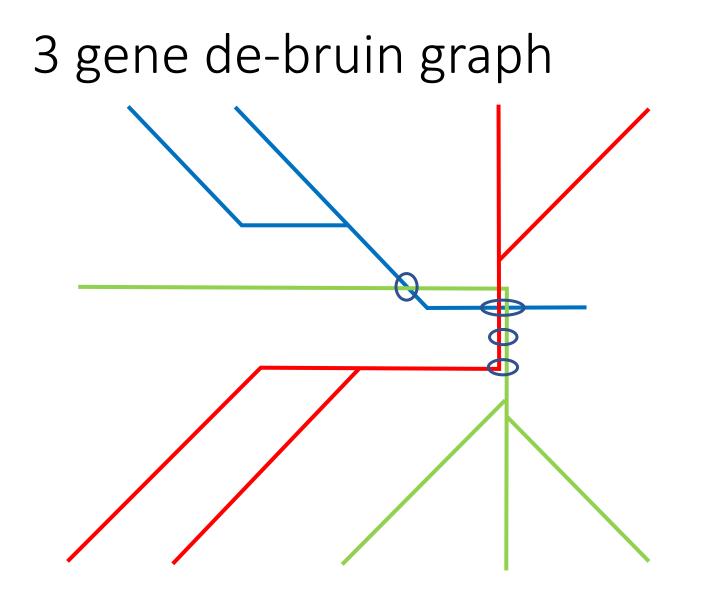
- Building a de Bruijn graph of the k-mers and identifying the important positions to separate different paths
- And using statistics assign the read to a transcript

Kalisto builds a de Bruijn graph with all the k-mers

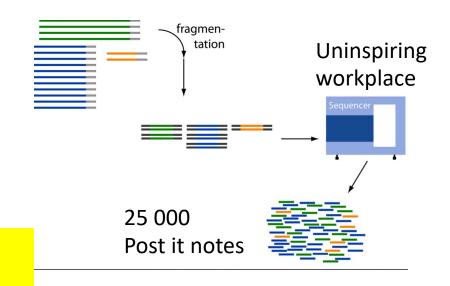


Kalisto builds a graph with all the k-mers




Kalisto builds a graph with all the k-mers

3 gene de-bruin graph with parts in common.


Stockholm subway de-bruin graph

>T10 transport (transcript), Blue Line Hjulsta,Tensta,Rinkeby,Rissne,Duvbo,Sundbybergs centrum,... ...,T-Centralen,Kungsträdgården.

What line was this person travelling

- One transport sequence per person
- Sequence so long so only one fragment is saved per travel sequence (~100 character)
- Much work to write entire sequence to post-it note so only first 25 characters are saved for each fragment.
- Total 25 000 post it notes

>Post it 1
nsta,Rinkeby,Rissne,Duvbo

How many persons are travelling on the different lines

• You can only remember 10 characters at the time.

```
>Post it 1
nsta,Rinkeby,Rissne,Duvbo
Post it 1:k-mer01
nsta,Rinke
Post it 1:k-mer16
ssne,Duvbo
```


T17	T18	T19	T10	T11	T13	T14
0	0	0	0	0	0	0

Post-it 2: K-mer 1 a, Universi

T17	T18	T19	T10	T11	T13	T14
0	0	0	1	0	0	0

 T17
 T18
 T19
 T10
 T11
 T13
 T14

 0
 0
 0
 1
 0
 0
 1

Post-it 3: K-mer 1 T-Centrale

Post-it 3: K-mer 2 -Centralen

T17	T18	T19	T10	T11	T13	T14
0	0	0	1	0	0	1

Post-it 3: K-mer 1 T-Centrale

Post-it 3: K-mer 2 -Centralen

Post-it 3: K-mer 3 Centralen,

T17	T18	T19	T10	T11	T13	T14
0	0	0	1	0	0	1

Post-it 3: K-mer 1 T-Centrale

Post-it 3: K-mer 2 -Centralen

Post-it 3: K-mer 3 Centralen,

Post-it 3: K-mer 4 entralen,K

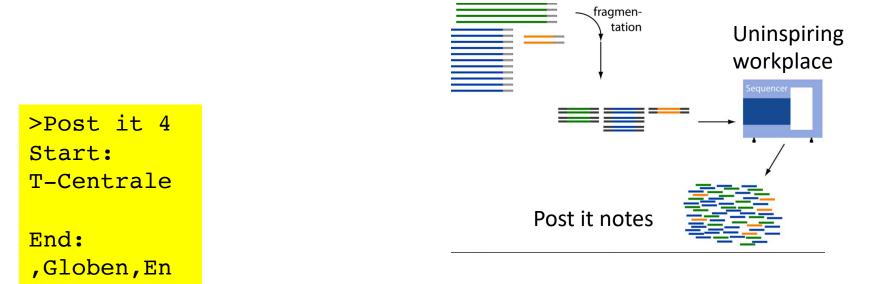
T17	T18	T19	T10	T11	T13	T14
0	0	0	1	0	0	1

Post-it 4: K-mer 1 T-Centrale

Т1	17	T18	T19	T10	T11	T13	T14
0		0	0	2	1	0	1

Post-it 4: K-mer 1 T-Centrale

Post-it 4: K-mer 4 entralen,G


T17	T18	T19	T10	T11	T13	T14
0	0	0	2	1	0	1

T17	T18	T19	T10	T11	T13	T14
1	1	1	2	1	1	2

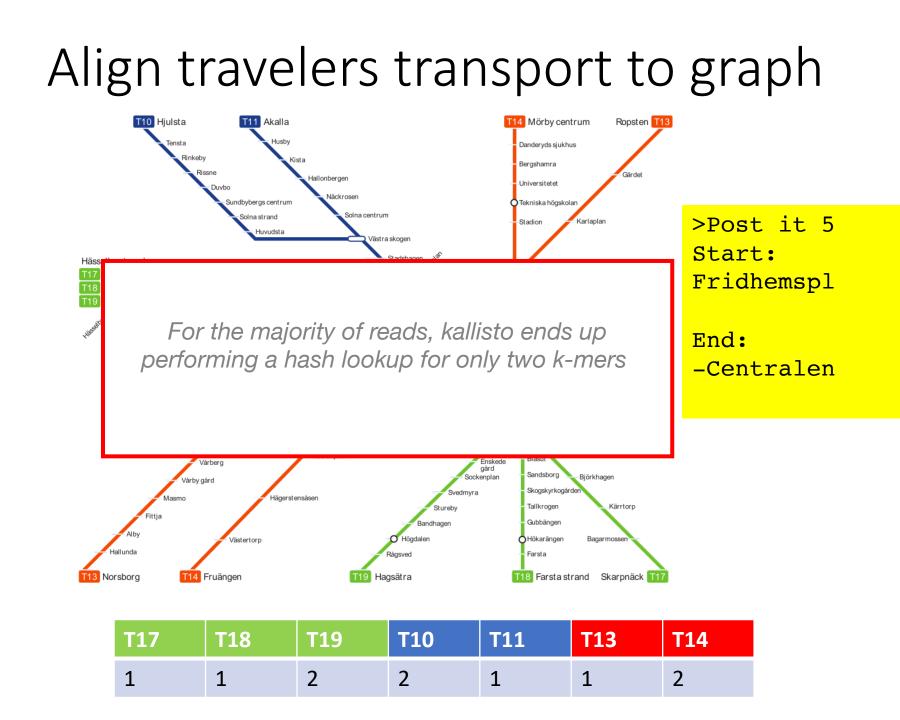
What line was this person travelling

- Sequence so long so only one fragment is saved per travel sequence (~100 character)
- Much work to write entire to post-it note so only first 10 AND last 10 characters are saved for each fragment.
- Total 25 000 post it notes

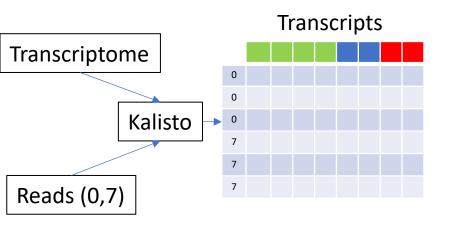
>Post it 4
Start:
T-Centrale

End: ,Globen,En

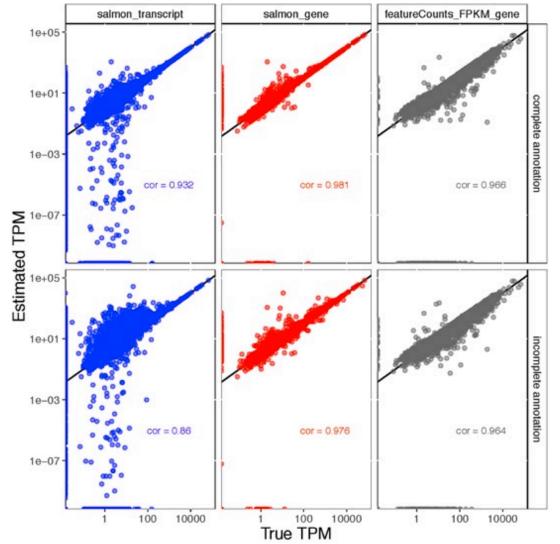
T17	T18	T19	T10	T11	T13	T14
1	1	1	2	1	1	2



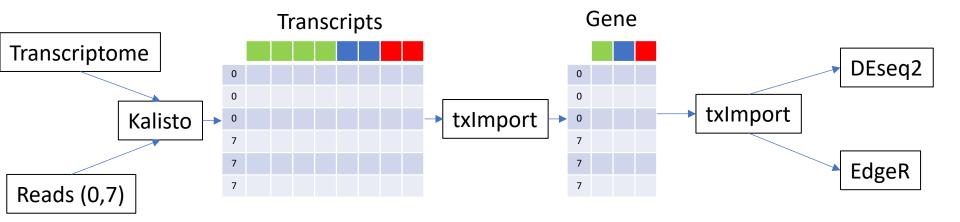
T17	T18	T19	T10	T11	T13	T14
1	1	2	2	1	1	2


So they divide it up to classes

Real result from Kallisto


[quant] fragment length distribution will be estimated from the
[index] k-mer length: 31
[index] number of targets: 173,259
[index] number of k-mers: 104,344,666
index] number of equivalence classes: 695,212
[quant] running in paired-end mode
[quant] will process pair 1: fastq/test.1.fastq.gz fastq/test.2.fastq.gz
[quant] finding pseudoalignments for the reads done
[quant] learning parameters for sequence specific bias
[quant] processed 92,206,249 reads, 82,446,339 reads pseudoaligned
[quant] estimated average fragment length: 187.018

Map reads to transcriptome


Better estimations on gene level

In this article, we have contrasted transcript- and gene-resolution analyses in terms of both abundance estimation and statistical inference, and illustrated that gene-level results are often more accurate, powerful and interpretable than transcript-level results.

Soneson C, Love MI, Robinson MD (2015). "Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences." F1000Research

Convert from transcript to gene using tximport

Thank you. Questions?

Johan Reimegård | 13-May-2019