NBS · SciLifeLab

DGE (part2)

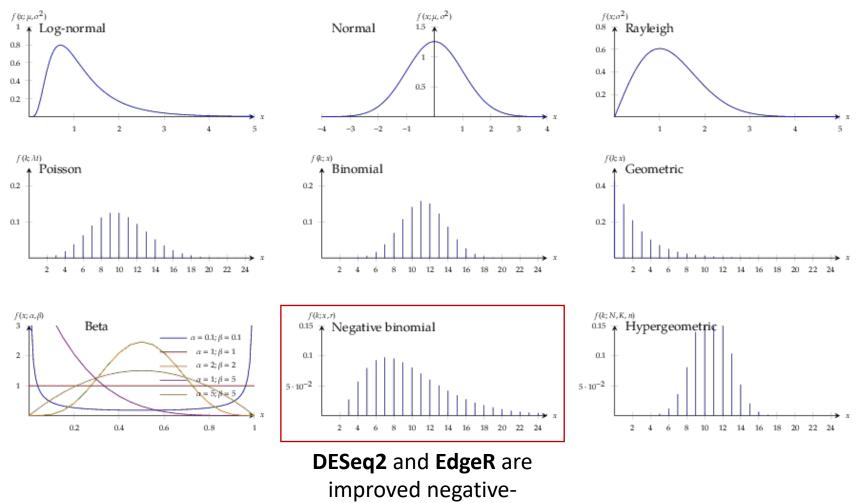
RNA-seq data analysis Paulo Czarnewski | 30-Nov-2020

What is a GLM?

Generalized linear models (GLM) is a <u>flexible</u> generalization of ordinary *linear regression* that allows for response variables that have error distribution models other than a normal distribution.

Distribution	Support of distribution	Typical uses	Link name	Link function, $\mathbf{X}oldsymbol{eta}=g(\mu)$	Mean function	
Normal	real: $(-\infty,+\infty)$	Linear-response data	Identity	$\mathbf{X}oldsymbol{eta}=\mu$	$\mu = \mathbf{X} oldsymbol{eta}$	
Exponential	real: $(0,+\infty)$	Exponential-response	Negative inverse	$\mathbf{X}\boldsymbol{\beta}=-\mu^{-1}$	$\mu = -(\mathbf{X}oldsymbol{eta})^{-1}$	
Gamma	real: $(0, +\infty)$	data, scale parameters				
Inverse Gaussian	real: $(0,+\infty)$		Inverse squared	${f X}oldsymbol{eta}=\mu^{-2}$	$\mu = (\mathbf{X}oldsymbol{eta})^{-1/2}$	
Poisson	integer: $0, 1, 2,$	count of occurrences in fixed amount of time/space	Log	$\mathbf{X}oldsymbol{eta} = \ln(\mu)$	$\mu = \exp(\mathbf{X}oldsymbol{eta})$	
Bernoulli	integer: $\{0,1\}$	outcome of single yes/no occurrence		$\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{1-\mu} ight)$		
Binomial	integer: $0, 1, \dots, N$	count of # of "yes" occurrences out of N yes/no occurrences	•	$\mathbf{X}oldsymbol{eta} = \ln\!\left(rac{\mu}{n-\mu} ight)$		
Categorical	integer: $[0, K)$		Logit	$\mathbf{X}oldsymbol{eta} = \lnigg(rac{\mu}{1-\mu}igg)$	$\mu = rac{\exp(\mathbf{X}oldsymbol{eta})}{1+\exp(\mathbf{X}oldsymbol{eta})} = rac{1}{1+\exp(-\mathbf{X}oldsymbol{eta})}$	
	K-vector of integer: $[0, 1]$,	outcome of single K-way				
	where exactly one element in the vector has the value 1	occurrence				
Multinomial	<i>K</i> -vector of integer: $[0,N]$	count of occurrences of different types (1 <i>K</i>) out of <i>N</i> total <i>K</i> -way occurrences				

GLM Distributions



binomial GLMs

Neg.Binomial vs Poisson Distributions

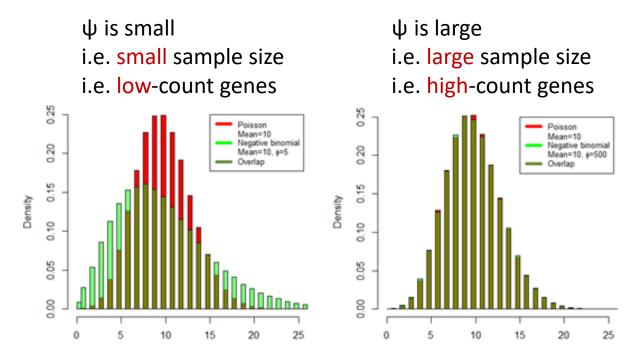


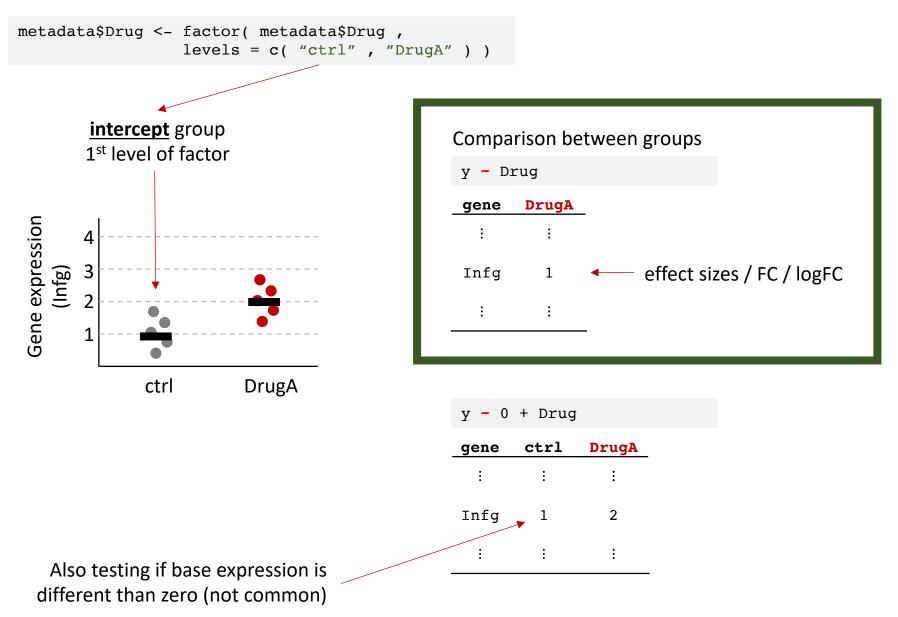
Figure shows that when ψ is small (e.g., ψ =5), a negative binomial distribution is more spread than a Poisson distribution with the same mean

"in case overdispersion exists, Poisson regression model might not be appropriate."

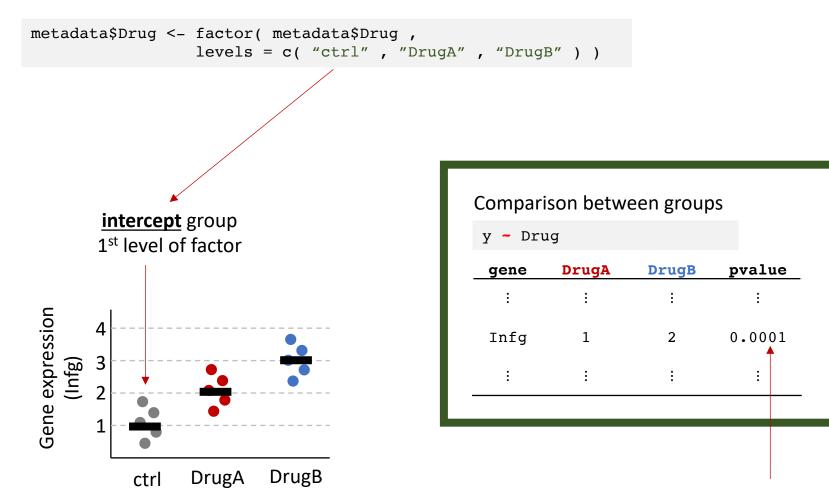
The negative binomial distribution will converge to a Poisson distribution for large ψ .

GLM intuition

What if I have 2 groups?



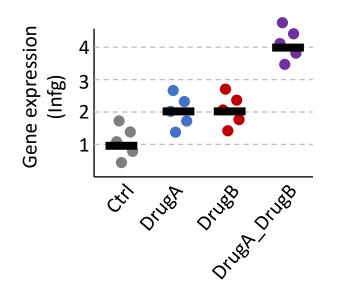
What if I have 3 groups?



Testing if the gene is significant in any of the conditions listed.

What if I have 2 variable groups?

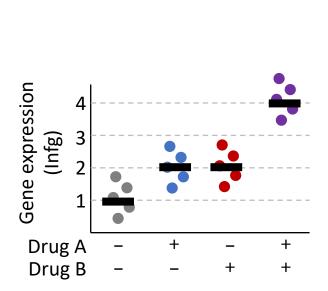
What you should **avoid** doing (whenever possible):



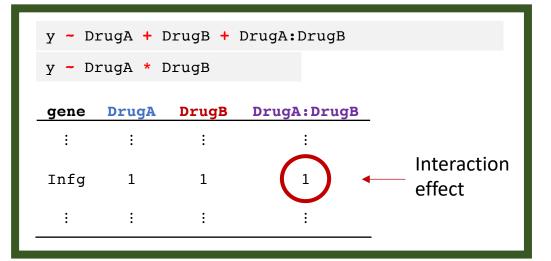
y - Drug				
gene	DrugA	DrugB	DrugA_DrugB	pvalue
÷	:	:	:	:
Infg	1	1	3	0.0001
:	÷	:	:	:

What if I have 2 variable groups?

What you should do instead (whenever possible):



y - DrugA + DrugB						
gene	DrugA	DrugB				
:	÷	÷				
Infg	1.5	1.5				
:	÷	:				



What if I have a batch effect?

Gene expression

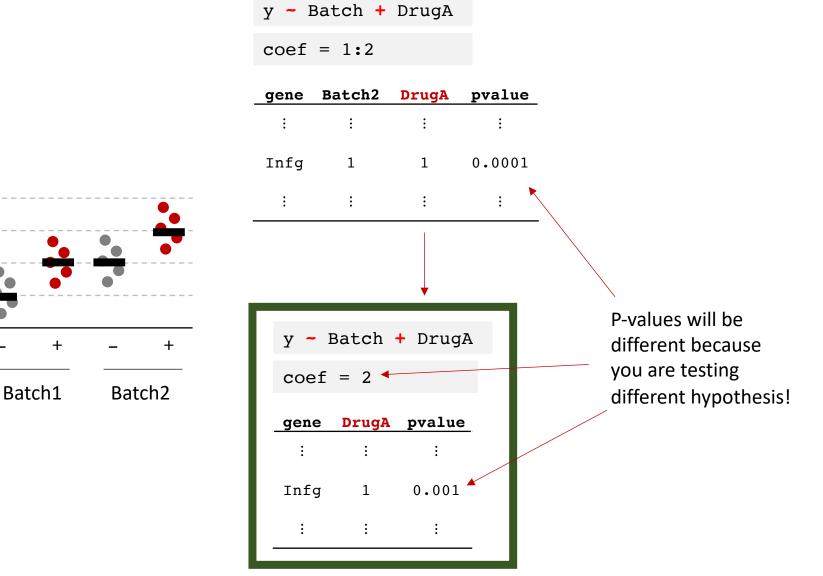
(Infg)

Drug A

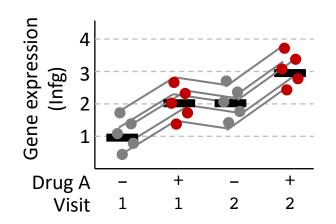
4

3

2



What if I have a individual-matched samples, plus a Drug treatment in two clinical visits?



y - Patient + Visit + DrugA								
gene	P2	Р3	P4	Р5	Visit2	DrugA	pvalue	
:					:	÷	÷	
Infg	.7	• 5	.3	1	1	1	0.0001	
:					:	:	:	
						•		
У	y - Patient + Visit + DrugA							
coef = 6								
gene DrugA pvalue								
:		:		:				
In	£g	1		0.00	1			
:		:		:			1	

What if I have time series (or other continuous)?

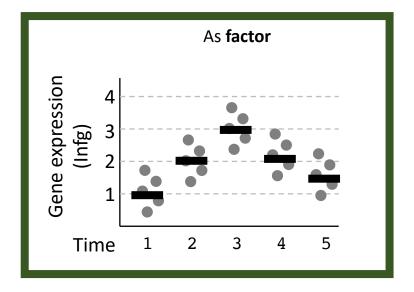
y - Time

IMPORTANT: set your **<u>Time</u>** variable as **factor**, so they are treated as categorical groups! e.g. by adding a string in the beginning

```
"day00" "day02" "day04" "day06" ...
```

Instead of :

0 2 4 6 ...



gene	day2	day3	day4	day5
÷	:	:	:	:
Infg	1	2	1	• 5
:	:	:	÷	:

IMPORTANT: Other continuous covariates (such as **patient age**, **exposure time**, etc) should be used as **numeric** if they don't represent grouping variables.

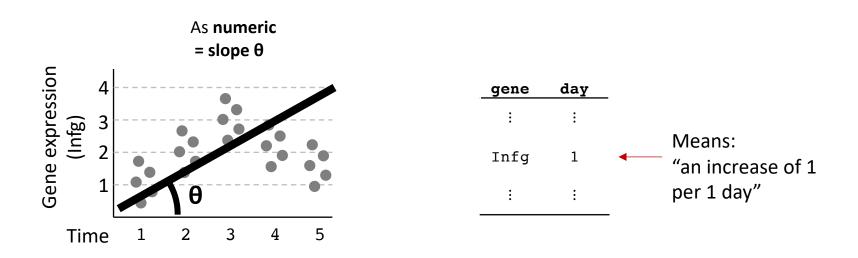
What if I have time series (or other continuous)?

y - Time

IMPORTANT: set your **<u>Time</u>** variable as **factor**, so they are treated as categorical groups! e.g. by adding a string in the beginning

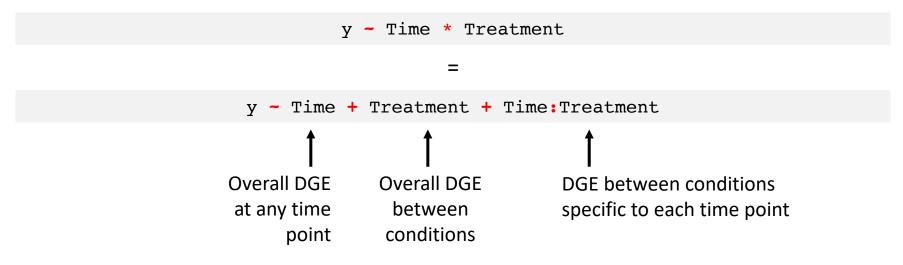
```
"day00" "day02" "day04" "day06" ...
Instead of :
```

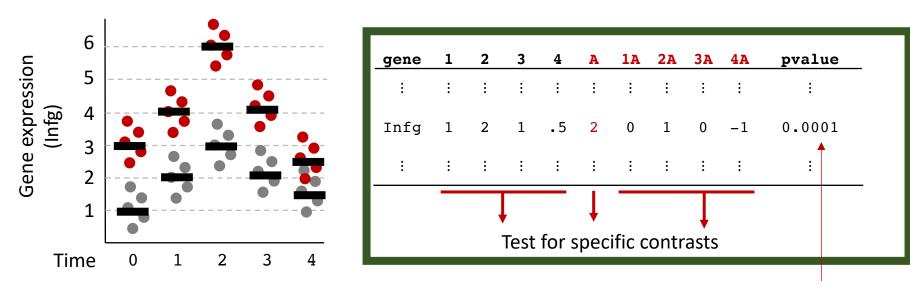
0 2 4 6 ...



IMPORTANT: Other continuous covariates (such as **patient age**, **exposure time**, etc) should be used as **numeric** if they don't represent grouping variables.

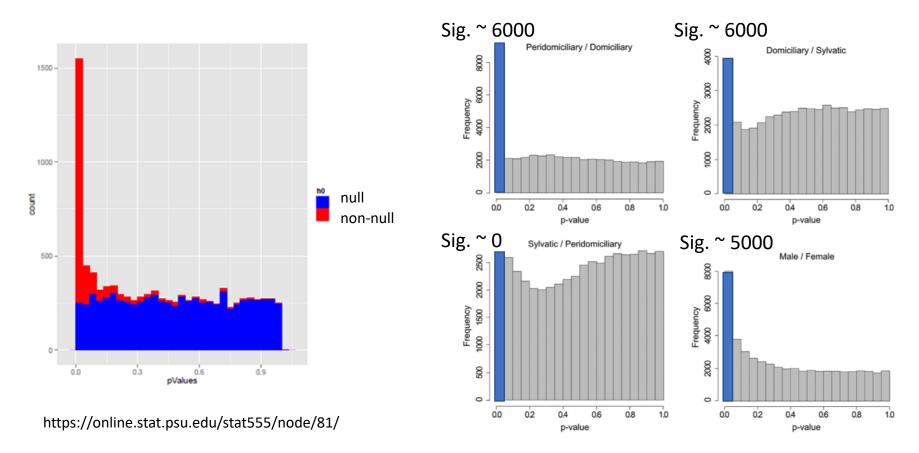
What if I have time series and a treatment?





Testing if the gene is significant in any of the conditions listed.

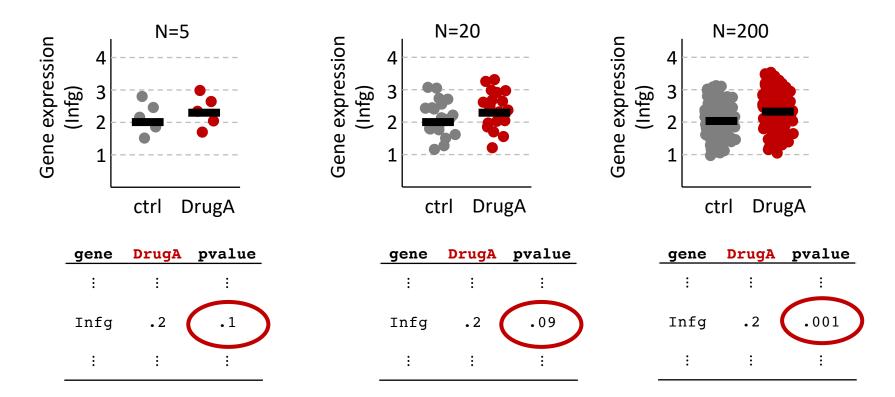
By chance, at least 5% of of the "significant" (p>0.05) are likely NOT significant (false positives)



That's why we perform FDR correction on multiple testing, to adjust the p-values so that those 5% do not become significant at a **NULL** hypothesis.

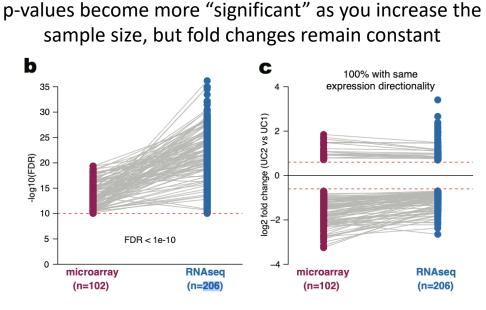
p-values represent the confidence you have in your mean measurement, and **NOT** that the groups are different!

y - Drug



That is why we <u>always</u> need to take the effect size (logFC) into consideration. FDR does **NOT** correct for this!

p-values represent the confidence you have in your mean measurement, and **NOT** that the groups are different!



Czarnewski et al (2019) Nat Communications

Thank you. Questions?

Paulo Czarnewski | 13-May-2019