NB SciLifeLab

Pseudo-aligners

RNA-seq data analysis Johan Reimegård | 13-May-2019 Pseudoaligners only assigns read to a transcript

- Not the actual location...
 - It does it by matching k-mers between read and transcripts
 - And using statistics assign the read to a transcript
- Not to genes on a genome but to transcripts

Kmers are nucleotides of length K

- Oct4 is 1574 nt long (L = 1574)
- Kmer is 7 (K= 7)
- Oct4 will contain 1568 Kmers (L-K+1)
-CTTGGAACAAT.....
 - CTTGGAA
 - TTGGAAC
 - TGGAACA
 - GGAACAA
 - GAACAAT

Creates a table with all the Kmers in all transcripts

Kmer/Transcript	Oct4	Oct3	Oct2	Sox2	Sox3
CTTGGAA	TRUE	FALSE	TRUE	FALSE	FALSE
TTGGAAC	TRUE	FALSE	TRUE	FALSE	FALSE
TGGAACA	TRUE	FALSE	FALSE	FALSE	FALSE
GGAACAA	TRUE	TRUE	FALSE	FALSE	FALSE
GAACAAT	TRUE	TRUE	FALSE	FALSE	FALSE
ААСААТА	TRUE	FALSE	FALSE	FALSE	FALSE

Splits up a read into the same Kmer size

Read1 = CTTGGAACAAT

Kmer Read1

CTTGGAA

TTGGAAC

TGGAACA

GGAACAA

GAACAAT

ААСААТА

Checks in which transcripts the Kmers exist and sums them up

Kmer Read1	Kmer	Oct4	Oct3	Oct2	Sox2	Sox3
CTTGGAA	CTTGGAA	TRUE	FALSE	TRUE	FALSE	FALSE
TTGGAAC	TTGGAAC	TRUE	FALSE	TRUE	FALSE	FALSE
TGGAACA	TGGAACA	TRUE	FALSE	FALSE	FALSE	FALSE
GGAACAA	GGAACAA	TRUE	TRUE	FALSE	FALSE	FALSE
GAACAAT	GAACAAT	TRUE	TRUE	FALSE	FALSE	FALSE
ААСААТА	ААСААТА	TRUE	FALSE	FALSE	FALSE	FALSE

Assign the read to one or many transcript

Checks which of the transcripts the number of kmers matched is least likely to happen by chance and assign it to those transcript

Redo the procedure for all reads

Read2 = GATACAGATAC 6 kmers of length 7

Read		Oct4	ļ.	Oct3		Ос	t2		So	x2	Sox3				
Read 2	2	0		0		0				6		6			
							Assi	gn re	ad	to transcr	ipts	5			
			F	Read		Sc	5x2	Sox	3						
			F	Read	2	1		1							
						A	\dd r	ead o	cou	nts to trar	nscr	ripts in sa	mp		
Read			Oct4	00	ct3	Oct2		Oct2		Sox2		Sox3			
Sam	ple	1	1	0			0			+1		+1			

8

But it takes time to look up so many k-mers

Real result from Kallisto

[quant]	fragment length	distribution	will	be	estimated	from	the	
[index]	k-mer length: 31							
[index]	number of target	s: 173,259						

[index] number of k-mers: 104,344,666

Build de-bruin graph from kmers

In this example three isoforms are the only ones that contains a set of kmers

Read contains five kmers

But kmer 2,3, are redundant and can be ignored

So instead of looking up five kmers Kallisto only has to look up 3

For the majority of reads, kallisto ends up performing a hash lookup for only two kmers

So they divide it up to classes

Real result from Kallisto

[quant] fragment length distribution will be estimated from the
[index] k-mer length: 31
[index] number of targets: 173,259
[index] number of k-mers: 104,344,666
index] number of equivalence classes: 695,212
[quant] running in paired-end mode
[quant] will process pair 1: fastq/test.1.fastq.gz fastq/test.2.fastq.gz
[quant] finding pseudoalignments for the reads done
[quant] learning parameters for sequence specific bias
[quant] processed 92,206,249 reads, 82,446,339 reads pseudoaligned
[quant] estimated average fragment length: 187.018
[em] quantifying the abundances done
[em] the Expectation-Maximization algorithm ran for 1,521 rounds
[bstrp] number of EM bootstraps complete: 100

Thank you. Questions?

Johan Reimegård | 13-May-2019