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Innovations in RNA-seq alignment 
software
• Read pair alignment
• Consider base call quality scores
• Sophisticated indexing to decrease CPU and memory usage 
• Map to genetic variants
• Resolve multi-mappers using regional read coverage
• Consider junction annotation
• Two-step approach (junction discovery & final alignment)



Input: sequence reads (FASTQ 
format)

@HWI-ST1018:7:1101:16910:46835#0/1

CTTCATTTCCCTCCAGTCCCTGGAGGGGCTTCTAGTATTACTGGGACAATGACCACGCTGCCTGTTTGTCTGTGAGTTACGGGCAACCAGCCTCTTCAGCC

+

bbbeeeeefgggghiiiiiiiiiiiiiiiiihihihhiiiihiiiiiiiihiiiiiiiiiggggdeeeebddddcbbbcccccccccccacccccccdbbX

@HWI-ST1018:7:1101:2937:53143#0/1

CGACCAGCTGATCGTGTCTCCAAGGGCAGAAGCACAAGCGGGGAGGCTGGGGTGGCTGCAGCGAGGTCCTCCCTAAGTAGGGCAGGGGAGCCCCCAGGTGG

+

bbbeeeeeggfggihihiiiiiiiiiihiiiihiiiiihihigadcccdcccZaa^^_acccc_ac_bcccccbb^bYabbcbc]a]aET]acaaMW^BBB

@HWI-ST1018:7:1101:14544:66521#0/1

GGTGGCTGCAGCGAGGTCCTCCCTAAGTAGGGCAGGGGAGCCCCCAGGTGGGGAGGGCTCATGGGGGCCAGGGAGTAAGGCTGGCTCCCCTGGTGGTGCAG

+

bbaeeeeegggggiifghiiiiiihfhfhihiifhigihhiiihigggdcecc^acccccccccaccccccccac^b_bcbccccbbaacba`Y`cT^_]]

@HWI-ST1018:7:1101:15405:122666#0/1

CCCACCTGCAACTTTCCTCCAAGTGTGGCTCGGAGAAGAAACATCAACAAGGACCCTGGGCTTCGATTCAAAAACTCCTCTGAAGCCATCCATGCCCTGGG

+

bbbeeeeegggggiiiiiiihiigieghiii_eU_^cbceghffdhhiiicg`\XaZ`ggcdecebcdbb`bcaW_]bbbb]bbbbcbc^`bbbb`bb_^W

@HWI-ST1018:7:1101:14326:133684#0/1

CGCCTGCCCAGCAGTGTTTATCCTGGGATCCTCCTATTGGGGTTGAGGGAGGGGAAGACAGCAGGAAGGTTGAGGGAGCAGCAACTTGGCCAGACCAAGCG

+

^\\cccc^Y[Ybee^bfcegagX_^aeehhheebZPbf_RZeO^_ea]`Ye`[WYY^Q_Xab]ZZ^Z\_aY[GY^aNROW^PQXQX`a`XY`P^aW^_aWO

...



Goal: reads mapped to genome 
(SAM format)

HWI-ST1018:7:1206:3667:137198#0 97      chr1    150812084       255     47M2769N47M7S   chr2    73300602        0

HWI-ST1018:7:2305:11836:132357#0        177     chr12   13070344        255     11S90M  chr2    73308461        0

HWI-ST1018:7:1205:18018:8988#0  97      chr12   51637109        255     96M5S   chr2    73302567        0

HWI-ST1018:7:1103:2457:70159#0  129     chr19   45504799        255     101M    chr2    73315542        0

HWI-ST1018:7:1107:14230:146505#0        99      chr2    73300510        255     101M    =       73300572        163

HWI-ST1018:7:1106:16800:63390#0 163     chr2    73300524        255     101M    =       73300652        229

HWI-ST1018:7:2306:19900:62130#0 99      chr2    73300547        255     101M    =       73300729        283

HWI-ST1018:7:2305:8697:195892#0 163     chr2    73300561        255     4S97M   =       73300680        224

HWI-ST1018:7:1208:10024:50258#0 99      chr2    73300563        255     98M3S   =       73300662        200

HWI-ST1018:7:1107:14230:146505#0        147     chr2    73300572        255     101M    =       73300510        -163

HWI-ST1018:7:1208:10123:71500#0 99      chr2    73300593        255     101M    =       73300684        192

HWI-ST1018:7:2107:11555:46214#0 163     chr2    73300593        255     101M    =       73300655        163

HWI-ST1018:7:1102:12130:87067#0 73      chr2    73300594        255     101M    =       73300594        0

HWI-ST1018:7:1102:12130:87067#0 133     chr2    73300594        0       *       =       73300594        0

HWI-ST1018:7:1206:3667:137198#0 145     chr2    73300602        255     101M    chr1    150812084       0

HWI-ST1018:7:1208:16138:88503#0 99      chr2    73300603        255     101M    =       73300733        231

HWI-ST1018:7:2206:7742:86872#0  163     chr2    73300621        255     101M    =       73300630        110

HWI-ST1018:7:1308:14606:19516#0 99      chr2    73300623        255     1S100M  =       73300801        280

HWI-ST1018:7:2301:14871:81110#0 99      chr2    73300623        255     101M    =       73300729        207

HWI-ST1018:7:2201:13683:64077#0 145     chr2    73300623        255     11S90M  =       73300625        112

...
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Spliced alignment

Second, unmapped reads are split into shorter segments and aligned 
independently. The genomic regions surrounding the mapped read 
segments are then searched for possible spliced connections. Exon-
first aligners are very efficient when only a small portion of the reads 
require the more computationally intensive second step. Alternatively, 
seed-extend methods8,50,51 such as ‘genomic short-read nucleotide 
alignment program’ (GSNAP)50 and ‘computing accurate spliced 
alignments’ (QPALMA)51 break reads into short seeds, which are 
placed onto the genome to localize the alignment (Fig. 1b). Candidate 
regions are then examined with more sensitive methods, such as the 
Smith-Waterman algorithm51 or iterative extension and merging of 
initial seeds8,50 to determine the exact spliced alignment for the read 
(Fig. 1b). Many of these alignment methods47–51 also support paired-
end read mapping, which increases alignment specificity.

Exon-first approaches are faster and require fewer computational 
resources compared to seed-extend methods. For example, a seed-
extend method (GSNAP) takes ~8t longer (~340 CPU hours) than 
an exon-first method (TopHat) resulting in ~1.5t�more spliced 
reads (Supplementary Table 1). However, the biological meaning 
of these additional splice junctions has not been demonstrated.

Exon-first approaches can miss spliced alignments for reads that 
also map to the genome contiguously, as can occur for genes that 
have retrotransposed pseudogenes (Fig. 1c). In contrast, seed-
extend methods evaluate spliced and unspliced alignments in the 
same step, which reduces this bias toward unspliced alignments, 
yielding the best placement of each read. Seed-extend methods per-
form better than exon-first approaches when mapping reads from 
polymorphic species52.

Transcriptome reconstruction
Defining a precise map of all transcripts and isoforms that are 
expressed in a particular sample requires the assembly of these reads 
or read alignments into transcription units. Collectively, we refer to 
this process as transcriptome reconstruction. Transcriptome recon-
struction is a difficult computational task for three main reasons. 

one seed in a read will perfectly match the reference. Each seed is used 
to narrow candidate regions where more sensitive methods (such as 
Smith-Waterman) can be applied to extend seeds to full alignments. 
In contrast, the second approach includes Burrows-Wheeler trans-
form methods39–41 such as Burrows-Wheeler alignment (BWA)40 
and Bowtie39, which compact the genome into a data structure that 
is very efficient when searching for perfect matches42,43. When allow-
ing mismatches, the performance of Burrows-Wheeler transform 
methods decreases exponentially with the number of mismatches as 
they iteratively perform perfect searches39–41.

Unspliced read aligners are ideal for mapping reads against a ref-
erence cDNA databases for quantification purposes5,20,26,44,45. If 
the exact reference transcriptome is available, Burrows-Wheeler 
methods are faster than seed-based methods (in our example, 
~15t faster requiring ~110 central processing unit (CPU) hours) 
and have small differences in alignment specificity (~10% lower) 
Supplementary Table 1). In contrast, when only the reference 
transcriptome of a distant species is available, ‘seed methods’ can 
result in a large increase in sensitivity. For example, using the rat 
transcriptome as a reference for mouse reads resulted in 40% more 
reads aligned at a cost of ~7t more compute time, yielding a compa-
rable alignment success rate as when aligning to the actual reference 
mouse transcriptome (Supplementary Table 1 and Supplementary  
Figs. 1 and 2). Similarly, an increase in sensitivity using seed meth-
ods has been observed when aligning reads to polymorphic regions 
in a species for quantification of allele-specific gene expression46.

Unspliced read aligners are limited to identifying known exons and 
junctions, and do not allow for the identification of splicing events 
involving new exons. Alternatively, reads can be aligned to the entire 
genome, including intron-spanning reads that require large gaps for 
proper placement. Several methods exist, collectively referred to as 
‘spliced aligners’, that fall into two main categories: ‘exon first’ and ‘seed 
and extend’. Exon-first47–49 methods such as MapSplice49, SpliceMap47 
and TopHat48 use a two-step process. First, they map reads con-
tinuously to the genome using the unspliced read aligners (Fig. 1a). 
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Figure 1 | Strategies for gapped alignments of 
RNA-seq reads to the genome. (a,b) An illustration 
of reads obtained from a two-exon transcript; 
black and gray indicate exonic origin of reads. 
Exon-first methods (a) map full, unspliced reads 
(exonic reads), and remaining reads are divided 
into smaller pieces and mapped to the genome. 
An extension process extends mapped pieces to 
find candidate splice sites to support a spliced 
alignment. Seed-and-extend methods (b) store a 
map of all small words (k-mers) of similar size in 
the genome in an efficient lookup data structure; 
each read is divided into k-mers, which are mapped 
to the genome via the lookup structure. Mapped 
k-mers are extended into larger alignments, 
which may include gaps flanked by splice sites. 
(c) A potential disadvantage of exon-first 
approaches illustrated for a gene and its associated 
retrotransposed pseudogene. Mismatches 
compared to the gene sequence are indicated in 
red. Exonic reads will map to both the gene and 
its pseudogene, preferring gene placement owing 
to lack of mutations, but a spliced read could 
be incorrectly assigned to the pseudogene as it 
appears to be exonic, preventing higher-scoring 
spliced alignments from being pursued.
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Introns can be very large!
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Limited sequence signals at splice 
sites

Iwata and Gotoh BMC Genomics 2011

and summarize the results in Additional file 4. From the
viewpoint of information contents, the same tendency as
that in the motif profiles could be observed. For exam-
ple, in mammals, the information contents of 3’ss are
high but those of BP are low, whereas the inverse
applies to fungi (Figure 3A). The information content of
BP of S. cerevisiae is the highest of all the 61 species.
When examined for all the 61 species, the information
contents of 3’ss and BP show a strong negative correla-
tion, whereas those of 3’ss and the percentage of PPT-
containing introns show a strong positive correlation
(Figure 3B). These observations are in good agreement
with the qualitative pattern of the motif profiles shown
in Figure 2.

Trees of 61 species constructed from individual intron
features
We took up five features that are related to intron
recognition as mentioned in Methods. For each feature,
we calculated the distance between a pair of species and
built a dendrogram (feature tree) of the 61 species using
those distances (Figure 4). As stated in the previous sub-
section, considerably variable motif profiles could be

observed for individual species. We naturally suspected
that each lineage has a similar tendency with respect to
a particular feature. This is in fact the case for the nine
mammalian species; the mammalian species occupy
nearby positions in all the five feature trees. The concor-
dance between species tree and feature tree is most pro-
minent for 5 ’ss, representing nearly monophyletic
appearances among various animal phyla, among
land plants, and among fungi. This tendency gradually
weakens for 3’ss, intron length, BP, and oligomer com-
position in this order. Remarkably, the feature tree for
intron length does not show monophyletic topology
even among mammals, suggesting the rapid evolutionary
change of this feature.

Feature trees of mammalian species
For the nine mammalian species, we classified the
introns into three subtypes according to their terminal
dinucleotide sequences. This is feasible as considerably
large amounts of data are available for most of the nine
mammalian species. We then made profiles for indivi-
dual subtypes and features, calculated the distance
matrices, and constructed a dendrogram for each
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Figure 2 Splicing signal motifs of seven species. Sequence motifs for 5’ss, 3’ss, and BP are depicted by Sequence logos WebLogo http://
weblogo.berkeley.edu/. The relative height of each letter is proportional to the relative entropy of the corresponding base at the given position,
and bases are listed in descending order of frequency from top to bottom.

Iwata and Gotoh BMC Genomics 2011, 12:45
http://www.biomedcentral.com/1471-2164/12/45
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Multi-mapping reads and 
pseudogenes

Functional gene Processed pseudogene

Correct read alignment
Identical, spliced

Incorrect read alignment
Mismatches, not spliced

Note:
• An aligner may report both alignments or either
• Some search strategies and scoring schemes give preference to unspliced alignments



How important is mapping 
accuracy?

Depends what you want to do:

Identify novel genetic variants or RNA editing

Allele-specific expression

Genome annotation

Gene and transcript discovery

Differential expression
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Current RNA-seq aligners
TopHat2 Kim et al. Genome Biology 2013

HISAT2 Kim et al. Nature Methods 2015

STAR Dobin et al. Bioinformatics 2013

GSNAP Wu and Nacu Bioinformatics 2010

OLego Wu et al. Nucleic Acids Research 2013

HPG aligner Medina et al. DNA Research 2016

MapSplice2 http://www.netlab.uky.edu/p/bioinfo/MapSplice2



Compute requirements
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(94.8%) among all the aligners. OLego yielded slightly higher pre-
cision (95.5%), but at the expense of lower sensitivity (94.2%).

Comparison on real data
We compared the aligners using 108,749,331 101-bp RNA-seq reads 
collected from fetal lung fibroblasts (GEO accession GSM981249; 
Supplementary Note). Because we do not know the true align-
ments for these reads, we evaluated alignment quality in two ways: 
(i) the cumulative number of alignments detected, up to an edit 
distance of 3, and (ii) the number of spliced alignments found that 
correspond to known human splice sites, based on the Ensembl 
GRCh37 gene annotation. At all distances, HISATx2, STARx2 
and HISAT aligned the greatest number of reads, in a tight range  
from 95.9 million to 96 million (Supplementary Fig. 3). We then 
examined the cumulative number of spliced alignments that cor-
respond to annotated human splice sites, also separated according 
to edit distance (Supplementary Fig. 4). At every distance and for 
the overall total, HISATx2, STARx2 and HISAT found the highest  
numbers of alignments, ranging from 34.6 million to 35.2 million. 
STAR and OLego found the lowest numbers of spliced alignments, 
at just 26.9 million and 26.2 million, respectively.

HISATx1 and HISAT took 23 and 27 min, respectively, and 
STAR took 25 min to process the 109 million reads. In contrast, 
TopHat2 took 1,170 min, OLego took 990 min and GSNAP took 
292 min. In terms of memory usage, the suffix-array methods 
STAR and GSNAP used 28 and 20.2 GB of RAM. The Burrows-
Wheeler transform–based programs (HISATx1, HISAT, HISATx2, 
OLego and TopHat2) required memory ranging from 3.7 to 4.3 GB  
of RAM (Table 2).

We provide alignment results for additional sets of simulated 
reads and for an additional real data set from Chen et al.17 con-
taining 217 million paired-end reads (Supplementary Figs. 5–7  
and Supplementary Tables 4–6). In all cases, the relative per-
formances of the alignment programs remained the same as 
described above. In Supplementary Table 7, we provide details 
of the input parameters and version numbers for all programs 
used in these evaluations.

DISCUSSION
Although HISAT is the first system to employ a hierarchical 
indexing strategy for spliced alignment, the strategy itself could 
be adopted by other methods if their data structures can be suit-
ably redesigned. All the programs that were included in our 
study—GSNAP, STAR, OLego and TopHat2—could in principle 
use hierarchical indexing and thereby improve their alignment 

speed and quality. HISAT gains additional sensitivity from align-
ment algorithms specifically designed to handle different types 
of intron-spanning reads. The combination of these algorithms 
with hierarchical indexing enables dramatically faster alignment 
while matching or exceeding the accuracy of the best previous 
spliced aligners.

METHODS
Methods and any associated references are available in the online 
version of the paper.
Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Program Run time (min) Memory usage (GB)

HISATx1 22.7 4.3
HISATx2 47.7 4.3
HISAT 26.7 4.3
STAR 25 28
STARx2 50.5 28
GSNAP 291.9 20.2
OLego 989.5 3.7
TopHat2 1,170 4.3
Run times and memory usage for HISAT and other spliced aligners to align 109 million 
101-bp RNA-seq reads from a lung fibroblast data set. We used three CPU cores to run the 
programs on a Mac Pro with a 3.7 GHz Quad-Core Intel Xeon E5 processor and 64 GB of RAM.
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Two-step RNA-seq read mapping
!

Nature Methods doi:10.1038/nmeth.3317 
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Supplementary Figure 9 

Two-step approach version of HISAT to allow alignment of junction reads with small anchors. 

This figure shows how to align reads with short anchors (1-7 bp) by making use of splice sites found by reads with long anchors. 

Kim et al. Nature Methods 2015



Mapping accuracy

Accuracy for 20 million simulated human 100 bp reads with 0.5% mismatch rate 
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The current version of GSNAP uses a suffix array in addition to 
its use of a 15-mer hash table, which makes it several times faster 
than earlier versions that used only the hash table. OLego aligns 
reads using a global index based on an FM index, similarly to 
HISAT’s algorithm. However, OLego runs very slowly, presumably 
because it relies on a global index to handle all the different types 
of reads. Overall for this simulated data set, HISATx1 was 49% 
faster than STAR, eight times faster than GSNAP, 62 times faster 
than TopHat2 and 143 times faster than OLego. HISAT was more 
accurate and only 10% slower than HISATx1.

Comparison of sensitivity
We calculated alignment sensitivity (reads that are aligned cor-
rectly, for which the beginning, end and all GT/AG splice sites 
within the alignment must match precisely) for all programs on 
the simulated reads (Fig. 3 and Supplementary Table 2). For 
non-GT/AG splice sites, an alignment was counted as correct 
if the intron boundaries matched within a 5-bp window. (Note 
that nonconsensus splice sites occur in just 0.6% of all reads. In 
Supplementary Table 3, we provided separate accuracies on this 
subset of splice sites when they were required to match precisely.) 
Among the one-pass algorithms (HISATx1, STAR, GSNAP and 
OLego), GSNAP and HISATx1 provided the highest alignment 
sensitivity at 93.8% and 93.5%, respectively. OLego and STAR 
yielded lower sensitivity, at 91.6% and 90.5%, respectively.

Compared to the one-pass programs, two-pass approaches 
(HISAT, HISATx2, STARx2, TopHat2) obtained higher overall 
accuracies. These four methods had sensitivity from 97.4% to 
99.3%, over 3% better than the one-pass methods.

For reads with shorter anchors (1–7 bp), the two-pass algo-
rithms (HISATx2, STARx2, TopHat2 and HISAT) generated much 
better alignment sensitivity, and we observed a similar result for 
reads spanning more than two exons (Fig. 4 and Supplementary 
Fig. 2). For reads with intermediate-length anchors, HISATx2, 

STARx2, HISAT and TopHat2 each correctly aligned >95.5% of 
the reads, whereas values for the one-pass methods ranged from 
52.2% to 89.4%. For the reads with the shortest anchors, HISATx2, 
STARx2, HISAT and TopHat2 all provided sensitivity higher than 
92%, whereas the other aligners correctly aligned fewer than 10% 
of these reads.

Accuracy of splice site detection
We separately calculated accuracy for detection of splice sites 
(Table 1). The simulated reads contained a total of 87,944 pairs 
of splice sites (acceptor and donor sites). We asked how many 
of these sites were correctly detected by each program, and we 
gave a program credit if at least one alignment supported a given 
splice site. We defined precision, or positive predictive value, as 
the percentage of predicted sites that matched a true splice site.  
By these measures, HISAT and GSNAP obtained the highest sen-
sitivity (97.3%), and HISAT obtained the second highest precision 
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Figure 4  | Alignment accuracy of spliced-alignment software for reads 
with small anchors from 20 million simulated reads. This figure shows 
the alignment sensitivity for reads with small anchors (2M_8_15 and 
2M_1_7). Reads are categorized as in Figure 3. The upper numbers on 
each bar show the percentages corresponding to correctly and uniquely 
mapped reads. The numbers inside parentheses represent the percentages 
for cases correctly and uniquely mapped and correctly multimapped 
combined. There were 1,022,348 and 843,420 reads in 2M_8_15 and 
2M_1_7, respectively.

Table 1  | Sensitivity and precision of leading spliced aligners

Program
No. of splice sites 

reported
No. of true splice 

sites reported
Sensitivity 

(%)
Precision 

(%)

HISATx1 91,904 85,546 97.3 93.1
HISATx2 90,331 85,603 97.3 94.8
HISAT 90,300 85,587 97.3 94.8
STAR 95,892 84,678 96.3 88.3
STARx2 92,254 84,734 96.3 91.8
GSNAP 92,547 85,598 97.3 92.5
OLego 86,779 82,879 94.2 95.5
TopHat2 96,474 79,705 90.6 82.6
Sensitivity and precision of leading spliced aligners for 87,944 true splice sites contained in 
20 million simulated reads from the human genome, with a mismatch rate of 0.5%. Sensitiv-
ity is the percentage of true splice sites found out of the total that were present. Precision 
(or positive predictive value) is the percentage of reported splice sites that are correct.
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The current version of GSNAP uses a suffix array in addition to 
its use of a 15-mer hash table, which makes it several times faster 
than earlier versions that used only the hash table. OLego aligns 
reads using a global index based on an FM index, similarly to 
HISAT’s algorithm. However, OLego runs very slowly, presumably 
because it relies on a global index to handle all the different types 
of reads. Overall for this simulated data set, HISATx1 was 49% 
faster than STAR, eight times faster than GSNAP, 62 times faster 
than TopHat2 and 143 times faster than OLego. HISAT was more 
accurate and only 10% slower than HISATx1.

Comparison of sensitivity
We calculated alignment sensitivity (reads that are aligned cor-
rectly, for which the beginning, end and all GT/AG splice sites 
within the alignment must match precisely) for all programs on 
the simulated reads (Fig. 3 and Supplementary Table 2). For 
non-GT/AG splice sites, an alignment was counted as correct 
if the intron boundaries matched within a 5-bp window. (Note 
that nonconsensus splice sites occur in just 0.6% of all reads. In 
Supplementary Table 3, we provided separate accuracies on this 
subset of splice sites when they were required to match precisely.) 
Among the one-pass algorithms (HISATx1, STAR, GSNAP and 
OLego), GSNAP and HISATx1 provided the highest alignment 
sensitivity at 93.8% and 93.5%, respectively. OLego and STAR 
yielded lower sensitivity, at 91.6% and 90.5%, respectively.

Compared to the one-pass programs, two-pass approaches 
(HISAT, HISATx2, STARx2, TopHat2) obtained higher overall 
accuracies. These four methods had sensitivity from 97.4% to 
99.3%, over 3% better than the one-pass methods.

For reads with shorter anchors (1–7 bp), the two-pass algo-
rithms (HISATx2, STARx2, TopHat2 and HISAT) generated much 
better alignment sensitivity, and we observed a similar result for 
reads spanning more than two exons (Fig. 4 and Supplementary 
Fig. 2). For reads with intermediate-length anchors, HISATx2, 

STARx2, HISAT and TopHat2 each correctly aligned >95.5% of 
the reads, whereas values for the one-pass methods ranged from 
52.2% to 89.4%. For the reads with the shortest anchors, HISATx2, 
STARx2, HISAT and TopHat2 all provided sensitivity higher than 
92%, whereas the other aligners correctly aligned fewer than 10% 
of these reads.

Accuracy of splice site detection
We separately calculated accuracy for detection of splice sites 
(Table 1). The simulated reads contained a total of 87,944 pairs 
of splice sites (acceptor and donor sites). We asked how many 
of these sites were correctly detected by each program, and we 
gave a program credit if at least one alignment supported a given 
splice site. We defined precision, or positive predictive value, as 
the percentage of predicted sites that matched a true splice site.  
By these measures, HISAT and GSNAP obtained the highest sen-
sitivity (97.3%), and HISAT obtained the second highest precision 
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Figure 3 | Alignment accuracy of spliced alignment software for 20 million 
simulated 100-bp reads. Alignment results for all read types (defined in  
Fig. 1 ) on simulated data containing errors. Reads are categorized as  
indicated by the colors. For multimapped reads, an aligner was credited 
with a correct alignment if it mapped a read to multiple locations and  
one of those locations was correct. Note that the set of multimapped  
reads reported by the various aligners may be different, depending on  
each program’s alignment policy and default behavior. The upper numbers 
are the percentages corresponding to correctly and uniquely mapped  
reads. The numbers inside parentheses show percentages for cases  
correctly and uniquely mapped and correctly multimapped combined.  
In Supplementary Table 2 , we provide detailed percentages on all four  
categories for each aligner.
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Figure 4  | Alignment accuracy of spliced-alignment software for reads 
with small anchors from 20 million simulated reads. This figure shows 
the alignment sensitivity for reads with small anchors (2M_8_15 and 
2M_1_7). Reads are categorized as in Figure 3. The upper numbers on 
each bar show the percentages corresponding to correctly and uniquely 
mapped reads. The numbers inside parentheses represent the percentages 
for cases correctly and uniquely mapped and correctly multimapped 
combined. There were 1,022,348 and 843,420 reads in 2M_8_15 and 
2M_1_7, respectively.

Table 1  | Sensitivity and precision of leading spliced aligners

Program
No. of splice sites 

reported
No. of true splice 

sites reported
Sensitivity 

(%)
Precision 

(%)

HISATx1 91,904 85,546 97.3 93.1
HISATx2 90,331 85,603 97.3 94.8
HISAT 90,300 85,587 97.3 94.8
STAR 95,892 84,678 96.3 88.3
STARx2 92,254 84,734 96.3 91.8
GSNAP 92,547 85,598 97.3 92.5
OLego 86,779 82,879 94.2 95.5
TopHat2 96,474 79,705 90.6 82.6
Sensitivity and precision of leading spliced aligners for 87,944 true splice sites contained in 
20 million simulated reads from the human genome, with a mismatch rate of 0.5%. Sensitiv-
ity is the percentage of true splice sites found out of the total that were present. Precision 
(or positive predictive value) is the percentage of reported splice sites that are correct.
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in the human genome. 5.1% of the reads spanned two exons with 
an intermediate-length anchor (8–15 bp) on one exon. Alignment 
programs that rely on a global index have great difficulty  
mapping these anchors uniquely (for example, an 8-bp sequence 
is expected to occur ~48,000 times in the human genome). This 
is where the use of a local index provides a substantial advan-
tage. In HISAT, each local index covers 64,000 bp; thus, over 90% 
of annotated human introns are completely contained in one of 
these indexes. After mapping the longer part of a read to identify  
the relevant local index, HISAT can usually align the remaining 
small anchor within a single local index rather than searching 
across the whole genome. On average, an 8-bp sequence will occur 
just once in a local index of this size.

In our simulated data, 4.2% of the reads span two exons with 
a very short anchor (1–7 bp) in one exon. Because these anchors 
are so short, the best approach is, where possible, to align these 
reads by making use of splice site information found by aligning 
other reads in the same data or by using known splice sites. Note 
that ~3.1% of reads span more than two exons. In many mapping 
algorithms, the alignment of short- and intermediate-anchored 
reads and reads spanning more than two exons (12.4% of the total 
reads) takes up to 30–60% of the total run time, and many of those 
reads are ultimately aligned incorrectly or left unaligned.

HISAT solves these challenging spliced-alignment problems 
using hierarchical indexing and several alignment strategies 
specifically designed for handling different read types (Online 
Methods).

Comparison to other tools for accuracy and speed
We compared the accuracy and speed of HISAT to several of 
the leading spliced-alignment programs, including STAR11, 
GSNAP10, OLego15 and TopHat2 (ref. 9), using both simulated 
and real reads. We tested three versions of HISAT (HISATx1, 
HISATx2 and HISAT), which we ran with different parameters. 
HISATx1 uses a one-pass approach that aligns each pair of  
reads independently of others. HISATx2 is a two-pass version 
of HISAT to mimic the two-step approach used in TopHat2.  

In this version, the first run reports a list of splice sites  
supported by reads with long anchors. The second run makes use  
of that splice site information to align reads with short anchors 
(Online Methods). As expected, HISATx2 takes twice as long to 
run, but it discovers more alignments. The STAR program also 
has a two-pass mode, denoted here as STARx2, which we included 
in our evaluation. We found that STARx2 was more than twice as 
slow as STAR’s default one-pass mode because, before its second 
pass, STAR must build a new index for the splice junctions found 
in the first pass.

The third variant of HISAT (its default version) combines the 
first two ideas to gain sensitivity without the large performance cost 
incurred by running the program twice. In this algorithm, we allow 
HISAT to make use of splice sites found during the alignment of 
earlier reads when aligning later reads in the same run. This hybrid 
approach finds almost all the alignments found by HISATx2, with 
run time nearly as fast as that of HISATx1. To the best of our knowl-
edge, this hybrid approach is the first such single-pass method that 
bypasses the time-consuming step of remapping reads but matches 
the sensitivity of two-pass methods. HISAT also includes an option 
to use known splice sites from gene annotations.

For our simulated data sets, we generated 20 million 100-bp reads 
with a mismatch rate of 0.5% and up to three mismatches per read 
from 17,647 randomly chosen transcripts from known protein- 
coding genes, based on the GRCh37 assembly of the human 
genome. Each transcript was assigned expression values according  
to a model provided by the Flux Simulator16 (Supplementary 
Note). Because we know the true alignments for the simulated 
reads, we can calculate alignment sensitivity as well as the sensi-
tivity and precision of splice site detection for each program. We 
also ran all programs on an error-free simulated data set. These 
results are consistent with the results on data with mismatches 
(Supplementary Fig. 1 and Supplementary Table 1).

We plotted the alignment speed of the programs for all reads 
(Fig. 2). HISATx1 and HISAT were fastest, at 121,331 and 110,193 
reads processed per second (r.p.s.), respectively, and STAR was 
third fastest at 81,412 r.p.s. As expected, HISATx2 (56,397 r.p.s.) 
and STARx2 (40,639 r.p.s.) took approximately twice as long as 
HISATx1 and STAR, respectively. Note that the speed reported 
for STARx2 did not include the index-building time. GSNAP was 
substantially slower at 14,611 r.p.s., and the slowest programs 
were TopHat2 (1,954 r.p.s.) and OLego (848 r.p.s.).
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Figure 1 | RNA-seq read types and their relative  
proportions from 20 million simulated 100-bp  
reads. (a) Five types of RNA-seq reads: (i) M,  
exonic read; (ii) 2M_gt_15, junction reads  
with long, >15-bp anchors in both exons;  
(iii) 2M_8_15, junction reads with intermediate,  
8- to 15-bp anchors; (iv) 2M_1_7, junction  
reads with short, 1- to 7-bp, anchors; and (v)  
gt_2M, junction reads spanning more than two  
exons. (b) Relative proportions of different types of 
reads in the 20 million 100-bp simulated read data.
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Figure 2 | Alignment speed of spliced alignment software for 20 million 
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Fig. 1) combined, measured as the number of reads processed per second 
by the indicated tools. Supplementary Figure 2 provides the alignment 
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Novel junctions are typically supported by 
few alignments

Engström et al. Nature Methods 2013
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Recommendations
• Use STAR, HISAT2 or GSNAP
• STAR and HISAT2 are the fastest
• HISAT2 uses the least memory
• If you want to run Cufflinks, use TopHat2 (but don’t)
• Consider 2-pass read mapping (default in HISAT2 and TopHat2)

• No need to supply annotation to mapper
• Check that junction discovery criteria are conservative

• HISAT2 and GSNAP can use SNP data, which may give higher sensitivity
• For long (PacBio) reads, STAR, BLAT or GMAP can be used
• Don’t trust novel introns supported by single reads
• Always check the results!



Initial steps in RNA-seq data 
processing

(for species with a reference genome)

1. Quality checks on reads

2. Trim 3' adapters (optional)

3. Index reference genome

4. Map reads to genome (output in SAM or BAM format)

5. Convert results to a sorted, indexed BAM file

6. Quality checks on mapped reads

7. Visualize read mappings on the genome

Followed by further analyses…



Browsing your results
Two main browsers:

UCSC Genome Brower
- Sluggish (remote web site)
- Need to place data on web server 

(e.g. UPPMAX webexport)
+ Much public data for comparison
+ Good for sharing your data tracks 

(e.g. using track hubs)

Integrative Genomics Viewer (IGV)
+ Fast response (runs locally)
+ Easy to load your data     (including 

custom genomes)
- Limited functionality
- User interface issues



Thank you. Questions?

Johan  Reimegård | 13-May-2019


