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RNA-seq with short reads



How are RNA-seq data 
generated?

Sampling process



Depending on the different steps 
you will get different results

AAAAAAAA

enrichments ->

reads ->

library ->

RNA-> PolyA (mRNA)
RiboMinus (- rRNA)
Size  <50 nt (miRNA )
….. 

Size of fragment
Strand specific
5’ end specific 
3’ end specific
….. 

Single end (1 read per fragment)
Paired end (2 reads per fragment)



Single end vs paired end reads
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Single end only contains one read per fragment (Read 1)
Paired end reads contains two reads per fragment (Read 1 and Read2)



Advantage with paired end reads
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Strand specific sequencing
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Different sequencing teqhniques
have different preferences
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Small	RNA-seq	cannot	measure	absolute	
abundances	

Sequencing	frequency	of	473	arAficial	microRNAs	in	equal	
abundance		

(Figure	from	Linsen	et	al.,	
Nature	Methods.	2009)	

Sequencing frequency of 472 artificial mircoRNAs in equal abundance



But evens out over longer RNAs
www.nature.com/scientificreports/
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groups consist of genes for which both methods agree on the differential expression status (i.e. differentially 
expressed or not differentially expressed). These genes are further referred to as concordant genes. The third and 
fourth group consist of genes for which both methods disagree on the differential expression status (i.e. differ-
entially expressed by only one method or differentially expressed by both methods but with opposite direction). 
These genes are collectively referred to as non-concordant genes. The fraction of non-concordant genes ranged 
from 15.1% (Tophat-HTSeq) to 19.4% (Salmon) and was consistently lower for the alignment-based algorithms 
compared to the pseudoaligners (Fig. 4B). While the non-concordant fraction appears large, it mainly consists of 
genes for which the difference in log fold change between methods (∆FC) is relatively low. For instance, over 66% 
of all genes in the non-concordant fraction have a ∆FC < 1 and 93% have a ∆FC < 2, irrespective of the workflow 
(Supplemental Fig. 7). We therefore defined a fifth group of genes with ∆FC > 2. These genes represent between 
7.1% (Tophat-HTSeq) and 8% (Tophat-Cufflinks) of the entire non-concordant fraction (Fig. 4B) and, together 
with the genes that have differential expression going in opposite directions, we considered as truly deviating 
between RNA-seq and qPCR. When evaluating the expression levels of the various fractions of non-concordant 
genes, it’s clear that the non-concordant genes with ∆FC > 2 and non-concordant opposite direction genes are 
primarily expressed at low levels (i.e. first expression quartile, Fig. 4B and Supplemental Fig. 8). In contrast, 
non-concordant genes with ∆FC < 2 are equally distributed across expression quartiles (Fig. 4B). An overview of 
all non-concordant genes is available in Supplemental Table 2.

To evaluate the extent to which the non-concordant genes are workflow-specific, we assessed the overlap 
of non-concordant genes between workflows (Fig. 5A and Supplemental Fig. 9). While a significant number of 
genes are shared between all workflows, several genes were identified that are specific to one workflow or a group 
of workflow (i.e. alignment based and pseudoaligners). Whereas the former points to systematic discrepancies 
between quantification technologies (i.e. qPCR and RNA-seq), the latter points to differences between individ-
ual workflows or groups of workflows. The number of workflow-specific, non-concordant genes with ∆FC > 2 
ranged from 5 (Kallisto) to 55 (Tophat-HTSeq). These are genes where the workflow fails to reproduce the dif-
ferential expression (observed by qPCR and all other workflows) or genes for which the workflow observes dif-
ferential expression that is not confirmed by qPCR or any of the other workflows. Examples of workflow-specific 
non-concordant genes with ∆FC > 2 are shown in Fig. 5B. LRRC74B and HNRNPA1L2 are differentially 

Figure 1. Gene expression correlation between RT-qPCR and RNA-seq data. The Pearson correlation 
coefficients and linear regression line are indicated. Results are based on RNA-seq data from dataset 1.

Benchmarking of RNA-sequencing analysis workflows using
whole transcriptome RT-qPCR expression data 



Fastq – read file format

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

Paired end data usually in format sampleX_1.fastq and 
sampleX_2.fastq with same SEQ_ID for both mate pairs, followed by 
/1 and /2 (or _f and _r)

Unique identifier Sequence

Sequence quality



Sequence quality (phred-score)
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RNA-sequencing with long reads



Long read sequencing

• Pacific Biosciences 
– Single molecule sequencing
– Very long read lengths (up to 30 kb)
– Rapid sequencing 
– Can detect base modifications (e.g. methylation)
– Relatively low throughput

– Oxford Nanopore
Pacific Biosciences RSII



PacBio – Sequencing Template



PacBio – Current read lengths
• >10kb average read lengths! (run from April 2014)



• Single molecule sequencing
- One read – one transcript

• Transcript in full length
- No assembly required

• No systematic bias
- CG-rich, AT-rich, tandem repeats

Iso-Seq: Full length RNA-seq on PacBio!



Thank you. Questions?
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