NB SciLifeLab

After sequencing QC

RNA-seq data analysis Johan Reimegård | 13-May-2019

Overview

- What can affect your data?
- Preventive measurements: spike-in controls, experimental design

RNA-seq libraries

- RNA quality:
 - Degradation
 - Contaminations (pathogens or other sources)
 - GC-bias

...

• Nuclear vs organelle reads

- RNA quality:
 - Degradation
 - Contaminations (pathogens or other sources)
 - GC-bias
 - Nuclear vs organelle reads
- Library prep:
 - Failed reactions
 - RNA / Adapter ratios primer dimers
 - Clonal duplicates
 - Chimeric reads
 - Contaminations

- RNA quality:
 - Degradation
 - Contaminations (pathogens or other sources)
 - GC-bias
 - Nuclear vs organelle reads
- Library prep:
 - Failed reactions
 - RNA / Adapter ratios primer dimers
 - Clonal duplicates
 - Chimeric reads
 - Contaminations
- Sequencing:
 - Base calling errors
 - Uncalled bases
 - Low quality bases (3' end)
 - Contaminations
 - Sequence complexity

From samples to reads

- may not be what you think they are
- Mixing samples
 - 30 samples with 5 steps from samples to reads has 24 300 000 potential mix ups of samples
 - Error rate 1/ 100 with 5 steps suggest that one of every 20 sample is mislabeled
- Experiments go wrong
 - 30 samples with 5 steps from samples to reads has 150 potential steps for errors
 - Error rate 1/100 with 5 steps suggest that one of every 20 samples the reads does not represent the sample
- Combine the two error sources and approximately one in every 10 samples is wrong

From samples to reads

- may not be what you think they are
- Mixing samples
- Experiments go wrong

How do we understand what went wrong?

From samples to reads

- may not be what you think they are
- Mixing samples
- Experiments go wrong

• How do we understand what went wrong?

RNA-seq analysis workflow

Paired end data usually in format sampleX_1.fastq and sampleX_2.fastq with same SEQ_ID for both mate pairs, followed by /1 and /2 (or _f and _r)

Fastq – read file format

S	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
13	
	$\# \hat{c} \hat{c} \hat{c} \hat{c} \hat{c} \hat{c} \hat{c} \hat{c}$
1	#\$%& ()^+;-:/0123450789:;<->:@ABCDEFGHIGKLEMOPQRSTOVWAI2[\] _ abcderghijkramopqrstuvwxy2{ }
33	59 64 73 104 126
0	
	-5
	0
	3
0	2
s	 Sanger Phred+33, raw reads typically (0, 40)
x	Solexa Solexa+64, raw reads typically (-5, 40)
I.	Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J	Illumina 1.5+ Phred+64, raw reads typically (3, 40)
	with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
	(Note: See discussion above)
т.	Tllumine 1 9t Dhrodt22 rew roads tunically (0 41)
Ц	· IIIumina 1.0+ Phreu+33, Taw reads cypically (0, 41)

Basic read metrics with FastQC

A program that analyses some of the basic metrics on fastq raw read files.

- Quality
- Length
- Sequence bias
- GC content
- Repeated sequences
- Adapter contamination

Code

- \$ module load bioinfo-tools
 \$ module load FastQC/0.11.2
- \$ fastqc -o outdir seqfile.fastq
- # multiple files:
- \$ fastqc -o outdir seqfile_*.fastq

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Thank you. Questions?

Johan Reimegård | 13-May-2019