

Mapping logs — mapping efficiency

- Program specific how the output will be (STAR, Bowtie, BWA, Tophat...)
- Always gives:
 - % uniquely mapping ideally around 90% for 100 bp reads
 - % multi-mapping will depend on read length
 - % unmapped could indicate contaminations, adaptors
- Also statistics on:
 - Mismatches / indels
 - Splice junctions

Star log example

```
[johanr@rackham3 star]$ more sample12 Log.final.out
                                 Started job on | May 11 •
20:01:21
                             Started mapping on | May 11
20:02:59
                                    Finished on | May 11 .
20:10:30
      Mapping speed, Million of reads per hour | 211.40
                         Number of input reads | 26483380
                     Average input read length | 202
                                    UNIQUE READS:
                  Uniquely mapped reads number | 23584867
                       Uniquely mapped reads % | 89.06% .
                         Average mapped length | 198.57
                       Number of splices: Total | 15591437
           Number of splices: Annotated (sjdb) | 15442151
                      Number of splices: GT/AG | 15453389
                      Number of splices: GC/AG | 110331
                       Number of splices: AT/AC | 13452
```

```
Number of splices: Non-canonical | 14265
               Mismatch rate per base, % | 0.33%
                  Deletion rate per base | 0.01%
                 Deletion average length | 1.97
                 Insertion rate per base | 0.01%
                Insertion average length | 1.36
                      MULTI-MAPPING READS:
Number of reads mapped to multiple loci | 838432
      % of reads mapped to multiple loci | 3.17%
Number of reads mapped to too many loci | 5600
      % of reads mapped to too many loci | 0.02%
                           UNMAPPED READS:
% of reads unmapped: too many mismatches | 0.00%
          % of reads unmapped: too short | 7.73%
              % of reads unmapped: other | 0.03%
```

Hisat 2 log example

```
• 13229276 reads; of these:
    13229276 (100.00%) were paired; of these:
      2258930 (17.08%) aligned concordantly 0 times
      10385753 (78.51%) aligned concordantly exactly 1 time
      584593 (4.42%) aligned concordantly >1 times
      2258930 pairs aligned concordantly 0 times; of these:
        271241 (12.01%) aligned discordantly 1 time
      1987689 pairs aligned 0 times concordantly or
 discordantly; of these:
        3975378 mates make up the pairs; of these:
          2915792 (73.35%) aligned 0 times
          963693 (24.24%) aligned exactly 1 time
          95893 (2.41%) aligned >1 times
• 88.98% overall alignment rate
```

Means that you can compare how well different programs behaves on different samples

More variation when using top hat 2 with default settings than when using STAR or Stampy with default setting

Bad mapping – what to do?

- First step try to figure out why it failed. With the use of FastQC/RseQC/Mapping logs.
 - Perhaps also look for contaminant species
 - Redo library prep controlling for possible errors
- Low mapping, but not completely failed.
 - Figure out why!
 - Is it equal for all samples?
 - Could it introduce any bias in the data?

After mapping - RseQC package

- General sequence QC:
 - sequence quality
 - nucleotide composition bias
 - PCR bias and
 - GC bias
- RNA-seq specific QC:
 - evaluate sequencing saturation
 - mapped reads distribution
 - coverage uniformity
 - strand specificity
 - Etc..
- Some tools for file manipulations

```
Code
```

- \$ module load bioinfo-tools
- \$ module load rseqc/2.4

```
$ geneBody_coverage.py -r
ref.bed12 -i mappedReads.bam -o
genecoverage
```

http://rseqc.sourceforge.net/

Soft clipping - clipping profile.py

clipping profile

Gene coverage - geneBody_coverage.py

Not degraded

Degraded

Distance between PE-reads - inner_distance.py

Where in the genome do your reads map? - read_distribution.py

Group	Total_bases	Tag_count	Tags/Kb
CDS_Exons	33302033	20002271	600.63
5'UTR_Exons	21717577	4408991	203.01
3'UTR_Exons	15347845	3643326	237.38
Introns	1132597354	6325392	5.58
TSS_up_1kb	17957047	215331	11.99
TSS_up_5kb	81621382	392296	4.81
TSS_up_10kb	149730983	769231	5.14
TES_down_1kb	18298543	266161	14.55
TES_down_5kb	78900674	729997	9.25
TES_down_10kb	140361190	896882	6.39

Known and novel splice junctions — junction_saturation.py or junction_annotation.py

Gene detection subsampling - RPKM_saturation.py How deep do you need to sequence?

Bad RseQC output – what to do?

- Try to figure out what went wrong.
 - Redo library prep controlling for possible errors
 - Is it equal for all samples?
 - Could it introduce any bias in the data?
- RNA-degradation in some samples
 - Possible to use a region at 3' end for expression estimates.

MultiQC – summary of QC stats

