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Differential expression analysis

Goal: identify significantly differentially expressed genes/exons/transcripts

examples: drug-treated vs. controls, diseased vs. healthy individuals, different
tissues, different stages of development, or something else.
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How are RNA-seq data generated?
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Sampling process
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Count-based statistics

Researchers often use discrete distributions (Poisson, negative binomial
etc.) rather than continuous (e g normal) distributions for modeling
RNA-seq data.

This is natural when you consider the way data are generated.

Thus, many DE analysis tools demand tables of integer read counts as
input, rather than RPKM/FPKM/TPM.

RPKM= Reads Per Kilobase Million

FPKM= Fragments Per Kilobase Million
TPM= Transcripts Per Million

Lab



Count nature of RNA-seq data

Programs like edgeR and DESeq2 want to make use of the count nature of RNA-seq data
rather than RPKM/FPKM to increase statistical power. The reasoning goes something like
this:

Scenario 1: A 30000-bp transcript has 1000 counts in sample A and 700 counts in sample B.

Scenario 2: A 300-bp transcript has 10 counts in sample A and 7 counts in sample B.

Assume that the sequencing depths are the same in both samples and both scenarios.
What would happen with the RPKM?

Which one would you consider more reliable and why?

Think-Pair-Share
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Count nature of RNA-seq data

Programs like edgeR and DESeq2 want to make use of the count nature of RNA-seq data to
increase statistical power. The reasoning goes something like this:

(simplified toy example!)

Scenario 1: A 30000-bp transcript has 1000 counts in sample A and 700 counts in sample
B.

Scenario 2: A 300-bp transcript has 10 counts in sample A and 7 counts in sample B.
Assume that the sequencing depths are the same in both samples and both scenarios.

Then the RPKM is the same in sample A in both scenarios, and in sample B in both
scenarios.

In scenario 1, we can be more confident that there is a true difference in the expression
level than in scenario 2 (although we would want replicates of course!) by analogy to a
coin flip:
600 heads out of 1000 trials gives much more confidence that a coin is biased than 6
heads out of 10 trials
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Technical vs biological replicates

Technical replicates:

Assess variability of measurement technique

Typically low for bulk RNA-seq (not necessarily true in single-cell
RNA-seq)

Poisson distribution can model variability between RNA-seq
technical replicates rather well

Biological replicates:

Assess variability between individuals / “normal” biological
variation

Necessary for drawing conclusions about biology
Variability across RNA-seq biological replicates not well

modelled by Poisson - usually negative binomial (“overdispersed
Poisson”) is used

Lab
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Replicates and differential expression

|deal case: Large variation between groups & low variation within groups

The more biological replicates, the better you can estimate the variation.
But how many replicates are needed?

Depends:
Homogeneous cell lines, inbred mice etc: maybe 3 samples / group enough.
Clinical case-control studies on patients: can need a dozen, hundreds or
thousands, depending on the specifics ....

Also depends on your research question...
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Different software packages and choices

* Many different options at each stage of the
analysis:

* Mapping software (alighment vs pseudo
alignment)

» Differential expression analysis (parametric
vs non-parametric and complexity of design)
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Possible workflows [ RNA'Se“lS"” reads |

Quality control
(FastQC)

Mapping to reference Mapping and detection of DEGs
(Tophat) (RSEM)

::::g Count based T
strategy strategy ebSeq

a Calculate transcri
: ‘s pt abundances Generate count data
Or BitSeq, eXpress, RSEM, Sailfish etc. (Cuffinks) (HTSeq)
Or BitS bS tc. Detection of DEGs Detection of DEGs Or SAMS li tc.
r BitSeq, ebSeq etc — o g <—0Or eq, limma, etc
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Read alighment pipelines and gene expression
estimates

Quantify
Map reads to transcript levels

reference

using pseudo
aligner

/7
4

T d
-

Quantify gene Quantify transcript
levels using levels using

mapped reads mapped reads
+annotation +annotation

Quantify
transcript levels
using mapped
reads

Gene level counts

Transcript level counts
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Transcript level analysis

Zhang et al. BMC Genomics (2017) 18:583

DOI 10.1186/512864-017-4002-1 BMC GenOmiCS

Evaluation and comparison of ® e
computational tools for RNA-seq
isoform quantification

— 1 - ETE ) c 14
Chi Zhang', Baohong Zhang', Lih-Ling Lin® and Shanrong Zhao
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Methods used in paper

Table 1 Run time metrics of each method on 50 million paired
end reads of length 76 bp in an high performance computing

FASTQ/FASTQ files cluster
Memory (Gb)  Run time {min}  Algorithm  Multi-thread
Cufflinks 3.5 17 ML Yes
RSEM 56 154 ML Yes
eXpress 0.55 30 ML No
— TIGAR2 283 1045 VB Yes
Salmon aln Cuffquant Sal -
eXpress = = ?'71()0 kallisto 38 7 ML Yes
RSEM Sailfish
= , kallisto Salmon 6.6 6 VB/ML Yes
TIGAR2 Cuffnorm
Salmon_ain 3 7 VB/ML Yes
Sailfish 6.3 5 VB/ML Yes

For methods that support multi-threading, eight threads were used. For alignment-
free methods (Kallisto, Salmon and Sailfish), a mapping step was included. The best
performer in each category is underlined and the worst performer is in bold

ML Maximum Likelihcod, V8 Variational Bayes

counts/TPM table

SCiLi]%Lab



Isoform quantification problematic for genes with many isoforms
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Fig. 2 Comparisons of the overall performance among different methods and the impact of the number of transcripts on the accuracy of isoform
quantification. a Pearson correlation coefficient. b mean absolute relative differences and ¢-d) The abave metrics were broken into separate groups
according to the number of annotated transcript isoforms for each gene. The number of transcripts in each group is shown in figure legends. The
accuracy metrics were calculated by comparing the estimated counts with the “ground truths” in simulated dataset
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TABLE 8.1

List of (some) Software Tools for Differential Expression Analysis

Software
Tool

DESeq
edgeR

tweeDESeq

Limma

SAMSeq
(samr)

NOISeq

CuffDiff

BitSeq

ebSeq

Type of
Software

R/Bioconductor
package

R/Bioconductor
package

R/Bioconductor

package

R/Bioconductor
package

R package

R/Bioconductor
package

Linux command
line tool

Linux command
line tool and R
package

R/BioConductor
package

Analysis Approach
Count-based (negative
binomial)
Count-based (negative
binomial)
Count-based (Tweedie
distribution family)

Linear models on
continuous data

Nonparametric test

Nonparametric test

Isoform
deconvolution +
count-based tests

Isoform deconvolution in
a Bayesian framework

Isoform deconvolution
in a Bayesian
framework

Comment

Considered conservative
(low false-positive rate)

Similar to DESeq in
philosophy

More general than
DESeq/edgeR, but new
and not widely tested

Originally developed for
microarray analysis, very
thoroughly tested. Need
to preprocess counts to
continuous values

Adapted from the SAM
microarray DE analysis
approach. Works better
with more replicates

Can give differentially
expressed isoforms as
well as genes (also
differential usage of TSS,
splice sites)

Can give differentially
expressed isoforms. Also
calculates (gene and
isoform) expression
estimates

Can give differentially
expressed isoforms. Can
be used in a pipeline
preceded by RSEM
expression estimation




Differential expression analysis?

’ . , signal _ difference between group means
Couldn’t we just use a Student’s t test — CarTaD T O OTouns
for each gene? - I\
- XT B xc
SE(X; - Xc)

Problems with this approach: http://www.socialresearchmethods.net/kb/stat_t.ph
- May have few replicates
- Multiple testing issues

- Distribution is not normal
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Dealing with the “t test issues”

Variance estimation issue: edgeR, DESeqg2 and limma (in slightly different ways)
“borrow” information across genes to get a better variance estimate. One says
that the estimates “shrink” from gene-specific estimates towards a common mean
value.
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Dealing with the “t test issues”

Variance estimation issue: edgeR, DESeg2 and limma (in slightly different ways)
“borrow” information across genes to get a better variance estimate. One says
that the estimates “shrink” from gene-specific estimates towards a common mean

value.

Multiple testing issue: All of these packages report q values or some other type of
false discovery rate corrected p values. For SAMseq based on resampling, for
others usually Benjamini-Hochberg corrected p values.
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Dealing with the “t test issues”

Variance estimation issue: edgeR, DESeq2 and limma (in slightly different ways)
“borrow” information across genes to get a better variance estimate. One says
that the estimates “shrink” from gene-specific estimates towards a common mean
value.

Muiltiple testing issue: All of these packages report g values or some other type of

false discovery rate corrected p values. For SAMseq based on resampling, for
others usually Benjamini-Hochberg corrected p values.

Distributional issue: Solved by variance stabilizing transform in limma — voom()
function

edgeR and DESeq model the count data using a negative binomial distribution
and use their own modified statistical tests based on that.

Scil ifcLab



Parametric vs. non-parametric
methods

It would be nice to not have to assume anything about the expression value
distributions but only use rank-order statistics. -> methods like SAM (Significance
Analysis of Microarrays) or SAM-seq (equivalent for RNA-seq data)

However, it is (typically) harder to show statistical significance with non-
parametric methods with few replicates.

According to Simon Anders (creator of DESeq) non-parametric methods are
definitely better with 12 replicates and maybe already at five

http.//seqanswers.com/forums/showpost.php?p=74264&postcount=3

.. but ...

Scil ifcLab



But: Revisiting the 48-replicate
benchmark paper

TABLE 1. RNA-seq differential gene expression tools and statistical tests

Assumed
Name distribution Normalization Description
t-test Normal DEseq® Two-sample t-test for equal variances
log t-test Log-normal DEseq® Log-ratio t-test
Mann-Whitney None DEseq® Mann-Whitney test
Permutation None DEseq® Permutation test
Bootstrap Normal DEseq® Bootstrap test - - - - - -
For experiments with <12 replicates per condition; use edgeR
baySeq"“ Negative Internal Empirical Bayesian estimate of posterior (exact).
binomial likelihood . ith >12 i dition:
Cufidiff Negative Internal UGam For experiments wi > replicates per condition; use
binomial DESeq.
DECseq* Binomial None Random sampling model using Fisher’s
exact test and the likelihood ratio test
DESeqg*® Negative DEseq® Shrinkage variance
binomial .
DESeq2°© Nebgalive | DEseq’ Shrinkage variance Parametric methods appa rent[y
inomial
EBSeq* Negative DEseq® Empirical Bayesian estimate of posterior WO rk‘i ng better
binomial {median) likelihood e
edgeR" Negative T™MM® Empirical Bayes estimation and either an
binomial exact test analogous to Fisher's exact
test but adapted to over-dispersed data
or a generalized linear model
Limma* Log-normal TMM® Generalized linear model
NOISeq* None RPKM Nonparametric test based on signal-to-
noise ratio
PoissonSeq*© Poisson log- Internal Score statistic
linear model
SAMSeq*® None Internal Mann-Whitney test with Poisson
resampling

Scil ifcLab



Fragment count

1) Model cross-replicate fragment count
dispersion (negative binomial)

Variance

Isoform A Mean

- Isoform B

* 2) Determine maximume-likelihood
Likelihood assignment of fragments to
isoforms

100% <*——> 100%
Isoform A Isoform B

No. of fragments

3) Model uncertainty in assignment
of fragments to isoforms
(beta)

Probability

No. of fragments from No. of fragments from

isoform A isoform A
= =
3 —> = <
[<] [<}
a o
25 50 75 25 50 75

4) Combine uncertainty and overdispersion into a single model of
fragment count variability (beta negative binomial)

-m—— m = aae No. of fragments from
—— . isoform A
Condition X
- ——— >
=
©
Q
[
o
Condition Y

5) Test for signficance of changes between
conditions in transcript-level counts

Scil ifcLab

CuffDiff2

Integrates isoform quantification +
differential expression analysis.

Also: BitSeq



Sleuth

Developed by the same team as CuffDiff, and superior to it according to
them. Based on Kallisto.

Transcript-oriented (like CuffDiff)
Includes uncertainty coming from “quantification noise” (like CuffDiff)

Supports modelling multiple experimental factors (unlike CuffDiff)

Scil ifcLab



Reason to use transcript-level analysis
counting can hide DE

Exon intersection s

o

[soform 1 s «—

ISOform 2 \ EXOH union G — S
Condition A Condition B Fold change Fold change Fold change

(actual) (union) (intersection)
o 0% . 9, ;
: e R S 38/30 14/14 717

° o Y .\'-

—_— —— — ) S—

Isoform 1: 12/3L; 4/3L Condition A: 12/3L + 2/2L = 30/6L

Isoform 2: 2/2L; 10/2L Condition B: 4/3L + 10/2L = 38/6L
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Complex designs

The simplest case is when you just want to compare two groups against each other.

But what if you have several factors that you want to control for?

Scil ifcLab



Complex designs

The simplest case is when you just want to compare two groups against each other.
But what if you have several factors that you want to control for?
E.g. you have taken tumor samples at two different time points from six patients,

cultured the samples and treated them with two different anticancer drugs and a mock
control treatment. -> 2x6x3 = 36 samples.
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Complex designs

The simplest case is when you just want to compare two groups against each other.
But what if you have several factors that you want to control for?

E.g. you have taken tumor samples at two different time points from six patients,
cultured the samples and treated them with two different anticancer drugs and a mock
control treatment. -> 2x6x3 = 36 samples.

Now you want to assess the differential expression in response to one of the anticancer

drugs, drug X. You could just compare all “drug X” samples to all control samples but
the inter-subject variability might be larger than the specific drug effect.
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Complex designs

The simplest case is when you just want to compare two groups against each other.
But what if you have several factors that you want to control for?

E.g. you have taken tumor samples at two different time points from six patients,
cultured the samples and treated them with two different anticancer drugs and a mock
control treatment. -> 2x6x3 = 36 samples.

Now you want to assess the differential expression in response to one of the anticancer
drugs, drug X. You could just compare all “drug X” samples to all control samples but
the inter-subject variability might be larger than the specific drug effect.

- DESeq2 / edgeR / Sleuth which can work with factorial designs

(but not e g CuffDiff2, SAMSeq)

Scil ifcLab



Decision tree for software selection (2016)

Differentially expressed exons => DEXSeq  sieuth
Differentially expressed isoforms => BitSeq, €uffdiff or ebSeq
Differentially expressed genes => Select type of experimental design
Complex design (more than one varying factor) => DESeq, edgeR,
limma> Sleuth
Simple comparison of groups => How many biological replicates?
More than about 5 biological replicates per group =>SAMSeq-
Less than 5 biological replicates per group => DESeq, edgeR,
limma

Scil ifcLab



1ake-away messages 1rrom Dt tool
comparison

-edgeR, DESeq and limma (the latter of which does not use the negative
binomial distribution) tend to to work well

-CuffDiff2, which should theoretically be “better”, seems to work worse,
perhaps due to the increased “statistical burden” from isoform expression
estimation. Two studies also report poor performance with >5 replicates

-The HTSeq quantification which is theoretically “wrong” seems to give good
results with downstream software

-It is practically always better to sequence more biological replicates than to
sequence the same samples deeper

Not considered in these comparisons:
- gains from ability to do complex designs
- isoform-level DE analysis (hard to establish ground truth)
- some packages like BitSeq, Sleuth

Scil ifcLab






How many biological replicates are needed in an RNA-seq
experiment and which differential expression tool should
you use?

RNA 22:1-13, 2016

NICHOLAS ). SCHURCH,""® PIETA SCHOFIELD,"*®* MAREK GIERLINSKI,">"* CHRISTIAN COLE,"®
ALEXANDER SHERSTNEV,"® VIJENDER SINGH,% NICOLA WROBEL,*> KARIM GHARBI,?
GORDON G. SIMPSON,* TOM OWEN-HUGHES,? MARK BLAXTER,® and GEOFFREY J. BARTON"?*

48 wild-type and 48 mutant (snf2 deletion) biological replicates in yeast
(well studied, relatively small genome, few multi-exonic genes => should be a
relatively “simple” case)

Recommendation:

At least six replicates per condition for all experiments.
At least 12 replicates per condition for experiments where
identifying the majority of all DE genes is important.

Scil ifcLab
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Gene level analysis

SCIENTIFIC REPQRTS

Benchmarking of RNA-sequencing
analysis workflows using whole-
transcriptome RT-gPCR expression

Received: 18 July 2016 d ata

Accepted: 3 April 2017
Published online: 08 May 2017 . .
Hed v Celine Everaert23, Manuel Luypaert*, Jesper L. V. Maag[]*, Quek Xiu Cheng®, Marcel E.
Dinger[J°, Jan Hellemans* & Pieter Mestdagh®?3
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Expression levels are similar between RT-qPCR and RNA-seq data
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Figure 1. Gene expression correlation between RT-qPCR and RNA-seq data. The Pearson correlation
coefficients and linear regression line are indicated. Results are based on RNA-seq data from dataset 1.
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Most problems are consistent so they disappear when you do diff-exp

SCiLifeLab

analysis
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Miscellaneous (if there is time)

« Batch normalization

Mixtures of cell types
Visualization of DE analysis results
Normalization and scaling

Beyond univariate DE analysis

Scil ifcLab



Batch normalization

Often, putting the experimental batch as a factor in the design
matrix is enough.

If you wish to explicitly normalize away the batch effects (to get a
new, batch-normalized expression matrix with continuous values),
you can use a method such as ComBat.

(Designed for microarrays, should use log scale values for RNA-seq)

Johnson, WE, Rabinovic, A, and Li, C (2007). Adjusting batch effects in

microarray expression data using Empirical Bayes methods. Biostatistics
8(1):118-127.
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Enabling cross-study analysis of RNA-Sequencing data

Qingguo Wangl’“, Joshua Armenia'?, Chao Zhang®, Alexander V. Penson'”, Ed
Reznik'? , Liguo Zhang®, Angelica Ochoa'?, Benjamin E. Gross'?, Christine A.
Iacobuzio-Donahue®, Doron Betel’, Barry S. Taylor"*¢, Jianjiong Gao'?, Nikolaus
Schultz"*®

Raw reads from
TCGA (tar.gz)

But see also 2015 paper

Assessing the consistency of public human tissue

RNA-seq data sets

Frida Danielsson, Tojo James, David Gomez-Cabrero and Mikael Huss

Corresponding author. Mikael Huss, Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Box 1031, SE-171 21

Solna, Sweden. Tel.: +46735675775; Fax: +46852481425; E-mail: mikael huss@scilifelab.se

SCiLiﬁaLab

Recent preprint
http://biorxiv.org/content/
early/2017/02/27/110734

Key Points

Publicly available data sets with precomputed RNA
expression levels are not comparable in their untrans-
formed state in the sense that samples from the same
tissues obtained in different experiments do not clus-
ter by tissue.

Logarithmic transformation improves clustering of
samples in principal components 2 and 3, while prin-
cipal component 1 still seems to be dominated by
study-specific factors.

RNA extraction method, read length and sequencing
layout (single-end versus paired-end) contribute
strongly to variation between samples.

Removal of known batch effects is essential for
clustering based on tissue type.

Reprocessing raw data avoids loss of expression
information because of gene identifier matching issues
but does not serve to improve clustering,




Individuals with disease

Control individuals

DE analysis in mixtures of cell types

Gene Cell-type
expression frequency
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CellMix, R package
implementing several
deconvolution methods
(most for microarray)

Gaujoux R, Seoighe C. CellMix: a
comprehensive toolbox for gene
expression

deconvolution. Bioinformatics. 2013 Sep
1;29(17):2211-2. doi:
10.1093/bioinformatics/btt351.

Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM, Hastie

T, Sarwal MM, Davis MM, Butte AJ. Cell type-specific gene expression

differences
in complex tissues. Nat Methods. 2010 Apr;7(4):287-9.
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Differential expression analysis
output

Top 10 differentially expressed genes tables for each contrast
Top differentially expressed genes: full_table_E16.5wt-E16.5ko.txt

Identifier logFC logCPM LR PValue FDR
ENSMUSG |- 0.68747064 |130.820399 |2.71053464 [1.02973211
000000466 |5.46102265 (8417142 258671 157785e-30 |033542e-25
23 507855
ENSMUSG |- 0.68747064 [130.820399 |2.71053464 |1.02973211
000000466 |5.46102265 (8417142 258671 157785e-30 |033542e-25
23 507855

(and so on ...)

Log fold change, FDR

How to visualize?

Sci
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Looking at top genes one by one
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More global view
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Normalization/scaling/transformation: different
goals

R/FPKM: (Mortazavi et al. 2008)
Correct for: differences in sequencing depth and transcript length
Aiming to: compare a gene across samples and diff genes within sample

TMM: (Robinson and Oshlack 2010)
Correct for: differences in transcript pool composition; extreme outliers
Aiming to: provide better across-sample comparability

TPM: (Li et al 2010, Wagner et al 2012)
Correct for: transcript length distribution in RNA pool
Aiming to: provide better across-sample comparability

Limma voom (logCPM): (Lawet al 2013)
Aiming to: stabilize variance; remove dependence of variance on the mean

Optimal Scaling of Digital Transcriptomes

Gustavo Glusman [E], Juan Caballero, Max Robinson, Burak Kutlu, Leroy Hood

Published: Nov 06,2013 « DOI: 10.1371/journa l.pone.0077885
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TMM - Trimmed Mean of M values

Attempts to correct for differences in RNA composition between samples

E g if certain genes are very highly expressed in one tissue but not another, there will be less
“sequencing real estate” left for the less expressed genes in that tissue and RPKM normalization (or
similar) will give biased expression values for them compared to the other sample

RNA population 1 RNA population 2

Equal sequencing depth -> white and purple will get lower RPKM in RNA population 1 although the
expression levels are actually the same in populations 1 and 2

Robinson and Oshlack Genome Biology 2010, 11:R25, http://genomebiology.com/2010/11/3/R25
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Normalization in DE analysis

edgeR, DESeq2 and some others want to keep the (integer) read
counts in the DE testing because they

Use a discrete statistical model
Want to retain statistical power (see next slide)

... but they implicitly normalize (by TMM in edgeR and RLE in
DESeq2) as part of the DE analysis.

Programs like SAMSeq and limma are fine with continuous values
(like FPKM), the former because it has a rank based model and the
latter because it cares more about the mean-variance relationship
being weak. They also apply their own types of normalization as part
of the DE testing.
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Beyond univariate differential expression (1)

Multivariate methods such as PCA (unsupervised) or PLS (supervised) can be used

to obtain loadings for features (genes/transcripts/...) that contribute to separation
of groups
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Beyond univariate differential expression (2)

Statistical/machine learning approaches:

Can use gene or transcript expression levels as features in a statistical model
when trying to predict some class (classification) or continuous variable
(regression)

Feature selection methods frequently needed to reduce the number of genes/

transcripts used in the model. E g lasso/elastic net or Boruta (random forest
based feature selection).
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