Advanced Topics in Single Cell Omics

RNA Velocity

Group 2

Grzegorz Maciag Michael Teske Adhideb Ghosh Daryl Boey

Volker Bergen

Paulo Czarnewski

Objectives

- 1. Identify driver genes using RNA velocity based on:
 - a. Genes contributing to vector fields in embedding
 - b. Dynamic gene modelling
 - c. Transiently expressed genes
- 2. Based on the above, determine biologically relevant genes in differentiation

AnnData is the Launchpad

AnnData is a **popular format** for storing sc data used by scanpy and scVelo. It allows for comprehensive and scalable storage of **data** matrix **and annotation** information features and samples on different **layers**.

Data Pre-processing

- Gene filtering:
 - Quality control
 - Eliminate covariates like dropouts, low/high gene counts in cells, high mitochondrial reads
 - Eliminate genes expressed only in small number of cells
- Variable gene selection:
 - Feature selection
- Normalisation:
 - Allows for cells to be intra-comparable
- Log transformation
 - Canonical way to measure gene expression
 - Mitigates mean-variance relationship
 - Reduces data skewness

Log-transformed

Data Imputation

- **kNN** graph represents distance and connectivity between cells, where each cell is connected to it's k neighbors
- The kNN graph is used for computing the mean (first-order moments) and variance (second-order moments) of its k neighboring cells (**kNN imputation**)
- Number of neighbors, k impacts the imputation
 - Lower k results into noisy blob without any meaningful biological information
 - Higher k completely smoothes out the variance generating artificial results
 - Default value of k=30 seems to work fine, as it can already capture the induction and repression phase

Choice of velocity model matters

Stochastic

velocity

Dynamic

How to interpret velocity phase portraits?

[26]: scv.pl.scatter(adata, ['Adk', 'Sulf2'], color='clusters')

State assignment k_i

Discover the Velocity Graph

The velocity graph is a graph of cell-to-cell transitions inferred from velocity. For two cells, *i* and *j*, it represents cosine similarities between velocity vector vi and gene expression change xj-xi

scv.tl.velocity_graph(adata)

- At basal developmental stages cells can display more locally confined trajectories without clear transitions into other cell types/clusters, indicating cell cycle-related velocity.
- Cells from more developmentally advanced clusters will usually exhibit a more clear trajectory towards more mature/terminally differentiated cell types.

Velocity graph can be used to measure stochasticity

In [221]: sc.pl.umap(adata, color='transition variance', cmap='YlOrRd')

Identify putative driver genes with Velocity

- ADCCO

Genes contributing to velocities of cell types

ranking velocity genes
finished (0:00:13) ---> added
'rank_velocity_genes', sorted scores by group ids (adata.uns)
'spearmans_score', spearmans correlation scores (adata.var)

	Ductal	Ngn3 low EP	Ngn3 high EP	Pre-endocrine	Beta	Alpha	Delta	Epsilon		
0	Veph1	Notch2	Tecr	Scg5	Rims3	Rasgrf2	Ncor2	Prdx4		
1	Notch2	Adamts16	Ptprs	Syt7	Col6a6	Sorcs2	Hat1	Pdk2		
2	Lamc1	ltgb6	Rfwd3	Abcc8	lsm1	Ube2u	P2ry1	Vgll4		
3	ltgb6	Veph1	Sel1l	Baiap3	Slc31a2	Skap1	Pdia5	Glce		
4	Vtcn1	Gm11266	Vwa5b2	Pcsk2os1	Kctd8	Trpc5	Ambp	Rab27a		
5	Adamts16	Hspa8	Mtch1	Gstz1	Nnat	Nfasc	Smarcd3	Heg1		
6	5730559C18Rik	ldh2	Runx1t1	Pcsk2	Sdk2	Zbtb7c	Gpr179	Syt13		
7	Errfi1	Errfi1	Ncor2	Slc38a11	Slc16a9	Rab27a	Zfpm1	Cpe		
8	Rps3	Rbbp8	Tgfbr1	Rab27a	Pgpep1I	Slc29a4	Sorcs2	Gpr179		
9	Gm11266	Rps3	Serpini1	Fhl2	Gm43948	Ptprn	Nucks1	Spsb4		

Correlation of transition probabilities based on driver gene subsets

Identify putative driver genes with dynamic behavior

Dynamically activating genes in the differentiation process based on cluster-specific likelihood

ranking genes by cluster-specific like	lihoods
finished (0:00:01)> added	
'rank_dynamical_genes', sorted sco	res by group ids (adata.uns)

Epsilon	Delta	Alpha	Beta	Pre-endocrine	Ngn3 high EP	Ngn3 low EP	Ductal	
Tox3	Pcsk2	Cpe	Pcsk2	Abcc8	Rbfox3	Dcdc2a	Dcdc2a	0
Rnf130	Rap1b	Gnao1	Ank	Tmem163	Mapre3	Adk	Top2a	1
Meis2	Pak3	Pak3	Tmem163	Gnao1	Btbd17	Mki67	Nfib	2
Adk	Abcc8	Pim2	Tspan7	Ank	Sulf2	Rap1gap2	Wfdc15b	3
Rap1gap2	Klhl32	Map1b	Map1b	Tspan7	Tcp11	Top2a	Cdk1	4
Map1b	Sic7a14	Rph3al	Pak3	Tox3	Ptbp3	Tpx2	Mki67	5
Ncam1	Cacna1d	Rap1b	Anxa4	Ppp3ca	Cbfa2t3	Hmga2	Shank2	6
Tmem163	Scgn	Gnas	Entpd3	Rap1b	Rock1	Bicc1	Racgap1	7
Tspan7	Anxa4	Rap1gap2	Abcc8	Gnas	Rfx6	Smoc1	Smoc1	8
Ank	Arg1	Tmem163	Ica1	Cacna1d	Eya2	Wfdc15b	Incenp	9

How to detect "relevant" genes?

Top 5 dynamic genes per cluster

Top 5 velocity genes per cluster

Color scale: velocity correlation between gene-based projection & actual projection

How many "relevant" genes?

Top 5 dynamic genes per cluster

Top 10 dynamic genes per cluster

Top 30 dynamic genes per cluster

Top 5 velocity genes per cluster

Top 10 velocity genes per cluster

Top 30 velocity genes per cluster

Color scale: velocity correlation between gene-based projection & actual projection

Discussion

- Transition matrix can be used to measure level of randomness in the velocity graph
- Driver genes can be detected based on different gene lists from literature, RNA velocity and dynamic modeling
 - Small number of gene velocities can account for velocity embedding
 - Quantification of embedding reconstruction based on velocity correlation
 - Biology is complex! number of genes required for complete reconstruction of velocities varies from subtype to subtype

Thank you

Milestone 5

5.1. Dimensionality reduction methods / embeddings and topology

DC5

FA1

N_neighbors impacts the velocity vector field

5.2. Main UMAP parameters impacts the embedding

UMAP is a decent trade-off between representing local and global topology, improvements can be made by adjusting parameters