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I ntrOd u Cti O n Developing human cortex

Data from different cells, comprising a single cell atlas of
- Gene expression (scRNA-seq)
- Chromatin accessibility (scATAC-seq)

Aims of the analysis:

1. To perform diagonal integration of unmatched scRNA-seq and scATAC-seq data.
2. To associate gene expression to accessibility in the developing human cortex.
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Pre-processing of separate datasets

scRNA-seq data:
Cells were already filtered by % of mito. and total counts.
Filtered genes (min cells = 3).

Normalized and log-transformed the raw counts.
Identified highly variable genes for dimensionality reduction.
Performed dimensionality reduction with PCA and computed a

KNN graph.

The clusters were previously defined.
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scATAC-seq data:

Some QC metrics were already calculated and used for filtering
cells.

Binarized the data matrix due to sparseness.

Filtered peaks accessible in < 10 cells.

Performed dimensionality reduction with Latent Semantic Indexing
(LSI) and computed a KNN graph.

The clusters were previously defined.
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Diffusion pseudotime

Aim: estimate the order of excitatory neurons along a differentiation trajectory with diffusion pseudotime.

Subsetted the data to include glutamatergic neurons (GIluN) only.
Performed dimensionality reduction with PCA and computed KNN graph.
Checked the expression of marker genes along the diff. traj.

Neuronal precursor markers:

EOMES PPPIR17 PENK NEUROG1

Defined a putative root cell (max of DC1) and plotted diffusion trajectory for GluNs.
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GIluN markers:

NEUROD2 TBR1 BCL118 SATB2
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UMAP_2

Co-embedding

Aim: annotate cells from the ATAC dataset exploiting the labels of RNA data

How: We infer the cell type annotations for “ATAC cells” through Seurat CCA approach

Annotation Correct

FALSE (n = 4700)
TRUE (n = 1723)

e Estimation of the gene activity based on ATAC data
e Identification of the anchors
e Transfer the metadata (cell annotations)
Comparison between the estimated cell types and the true annotation
Predicted annotation Ground-truth annotation
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Co-embedding: from diagonal to horizontal configuration

Aim: horizontally integrate the data to have a common embedding space, thus to have gene expression
values also for ATAC cells

Diagonal integration (no anchors) Horizontal integration (features as anchors) -

Features

Horizontal integration: Seurat CCA
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How: we impute the gene expression value for “ATAC cells” exploiting Seurat CCA approach

e Estimation of the gene activity based on ATAC data

e I|dentification of the anchors
e Transfer the gene expression values
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Co-embedding to define a pseudotime ordering of differentiating glutamatergic
neurons from nlIPCs
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Once we have a common embedding, we can use
standard similarity-based trajectory inference
methods to order the excitatory neurons in
pseudotime.

We used the Diffusion Pseudotime implementation in
sc.tl.dpt.


https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.dpt.html

Selecting features for chromatin accessibility-expression associations

After having identified a common embedding and a common pseudotime axis, we need to select the features that we will use to

associate gene expression to chromatin accessibility.
Why the feature selection step?

1.  Test all the peaks against all the genes is computationally expensive + multiple test burden
2. Long range interactions on the genome are not very common (no sense to test for associations between genes and chromatin regions

that are extremely far apart e.g. on different chromosomes)
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Aim: Select a subset of interesting genes that seem to have a _ _
dynamic behaviour in the differentiation trajectory Aim: Select a subset of peaks that could probably be involved
in gene expression regulation

How: We correlated the log-normalized gene expression to

the value of pseudotime (Spearman correlation) How: We subset the possible gene-region pairs to regions

within a certain range of the gene (100000 base pairs)

SATB2: known marker of glun differentiation -
highest correlation value
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Aggregating expression/accessibility profiles from multiple cells

Why this step?
To associate gene expression to accessibility (last step) we need the same cell-level unit

1.

2.
3.
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To deal with the high sparsity of the scATAC profiles

To prioritize the most robust associations

To reduce the computational burden of testing for associations

Common embedding
(only cells belonging to glutamatergic

neuron differentiation trajectory)
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Clustering on the co-embedding
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For each cluster, summarize

expression/ATAC counts
(AggregateExpression function from Seurat

package)
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Associating gene expression to accessibility
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Functional pathway analysis

Over-representation analysis of genes with significant correlations to accessible peaks.
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Summary of analysis steps

Preprocessing of RNA-seq and ATAC-seq data separately
Co-embedding - from diagonal to horizontal integration (CCA)
Order excitatory neurons along a differentiation trajectory (dpt)

Feature selection:

o Genes - based on correlation to the trajectory
o Peaks - subset the possible gene-region pairs to regions within 100000 bp of the gene

Aggregate expression/accessibility profiles (computational intensity reduction
and dealing with ATAC sparsity)
|[dentify significant gene expression to accessibility associations



Challenges

e ATAC-seq data is large - lots of memory trouble
e Deciding which method and parameters to choose for:
e Co-embedding (e.g. how to count summarize ATAC-seq signal over
genes)
e Feature selection (variable genes/correlation to pseudotime,
chromVAR/Cicero...)
e Aggregation (clustering, subsampling)
e Interoperability between AnnData, SCE, and Seurat
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