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Who am I?

● Name : Alma Andersson

● Part of : Lundeberg Lab (PhD Student)

● Works with : Computational Method Development
○ Mainly focus on spatial transcriptomics data 

● Background : 
○ Engineer by training

○ Before: Molecular Dynamics

○ Now: Spatial Transcriptomics 

● Work :
○ Single cell and spatial transcriptomics data integration (stereoscope)

○ Model to find spatially variable genes (sepal)

○ Spatial characterization of HER2 breast cancer samples

○ Common coordinate frameworks for spatial data

● Non-scientific Interests
○ Trail/Ultrarunning, Hiking, Outdoor stuff
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My vision for today

Introduction

Computational methods and frameworks

● Broad overview of experimental spatial transcriptomics techniques
● A Recap on Visium
● Data character - what are we working with?

● Different flavors of currently available methods
● Example methods
● Extra focus on single cell mapping and integration
● squidpy : a framework for handling spatial data

● General advice
● Example : A spatial survey of HER2-positive breast cancer
● Example : Spatial gene expression dynamics in the mouse liver  

Observations from the wild
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Experimental techniques

in-situ 
capture 

Microdissection

Spatial
Transcriptomics

in-situ 
sequencing 

in-situ 
hybridization 

in-silico
reconstruction 

Future
Technologies

Categories from : Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration, Asp et al.
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Microdissection-based technologies

Isolate a region of interest, place isolate in separate 
well and sequence (either by bulk or single-cell 
methods). 

A “Brute Force” approach.

Examples : LCM, Tomo-seq, TIVA, ProximID, 
Niche-seq
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Categories from : Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration, Asp et al.

In-situ sequencing based methods

Sequence the transcripts in place. 

Offer sub-cellular resolution. Some relies on “a 
priori” defined targets, but not all.

Examples : ISS/Cartana (padlock probes), BaristaSeq, 
STARmap, FISSEQ
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Experimental techniques

in-situ 
capture 

Microdissection

Spatial
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Future
Technologies

Categories from : Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration, Asp et al.

In-silico reconstruction

Infer and reconstruct spatial structure from 
non-spatial data (e.g., single cell).

Examples : novoSpaRc, CSOmap, Seurat v3
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Experimental techniques

in-situ 
capture 

Microdissection

Spatial
Transcriptomics

in-situ 
sequencing 

in-situ 
hybridization 

In-silico
reconstruction 

Future
Technologies
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Labeled probes for specific targets, hybridize in place. 

Requires “a priori” defined targets. 

Expansion strategies and smart decoding scheme has 
helped  to overcome spectral overlap.

Examples : smFISH, seqFISH, MERFISH, seqFISH+, 
osmFISH, RNA Scope, DNA microscopy

In-situ hybridization based methods
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In-situ capture based methods

Capture transcripts in situ but sequence ex situ. 
Usually less dependent on prior selection of targets.

Examples : Visium, ST, Slide-Seq, HDST, GeoMX, 
Apex-Seq, Stereo-SEQ



Experimental techniques

PubMed results

Search: Spatial Transcriptomics
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Experimental techniques

Spatially Resolved Transcriptomes—Next Generation Tools for Tissue 
Exploration
Authors : Michaela Asp, Joseph Bergenstråhle, Joakim Lundeberg
Published : 2020-05-04 
DOI: 10.1002/bies.201900221

Further Readings

Spatially resolved transcriptomics adds a new dimension to 
genomics
Authors : Ludvig Larsson, Jonas Frisén & Joakim Lundeberg
Published : 2021-01-06
DOI: 10.1038/s41592-020-01038-7

Museum of Spatial Transcriptomics
Authors :  Lambda Moses and Lior Pachter
Published : 2021-05-12
Link: https://pachterlab.github.io/LP_2021/

in-situ 
capture 

Microdissection

Spatial
Transcriptomics

in-situ 
sequencing 

in-situ 
hybridization 

in-silico
reconstruction 

Future
Technologies

Categories from : Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration, Asp et al.
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Experimental techniques

Visium

in-situ 
capture 

Microdissection

Spatial
Transcriptomics

in-situ 
sequencing 

in-situ 
hybridization 

In-silico
reconstruction 

Future
Technologies

Image from : https://www.10xgenomics.com/products/spatial-gene-expression
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Visium :: Recap

Tissue + 
Visium array

Permeabilize and 
capture mRNA

Sequence cDNA with 
spatial barcodes

Relate gene 
expression to physical 

location 
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Visium :: Recap

● Array based technique

● 6.5mm x 6.5mm area to put sample on

● 4992 spots arranged in hexagonal grid

● Array specs:
○ Spot diameter : 55µm

○ Center to center distance : 100 µm

● Successor to Spatial Transcriptomics (ST)

● Data processing often includes :

○ Genome mapping and annotation

○ Spatial barcode demultiplexing

● Approx. 1-10 cells contribute to each spot 
○ NOTE : Not single cell resolution!

● Data represented as [spot] x [gene] matrix

● You also get HE-image of the same tissue

100µm
55µm

https://kb.10xgenomics.com/hc/en-us/articles/360035487572-What-is-the-spatial-resolution-and-configuration-of-the-
capture-area-of-the-Visium-Gene-Expression-Slide-
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Visium :: Recap

Facecolor intensity proportional 
to gene expression value

● Example with Human Breast cancer data
○ Public data : Available at 10x website

Spots Only Spots + HE image Spots + ERBB2 expression + HE image
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Computational Analysis



A motley crew of diverse methods 11



Single Cell Inspired methods

● Basic idea : apply existing methods and tools developed for 

single cell data. 

● Examples :

○ Cluster spatial data, show clusters in space

○ Factor models for data decomposition

○ Trajectory Inference

● Suites/Tools:

○ Seurat : added support for spatial data

○ Scanpy : added support for spatial data

○ STUtility : built on Seurat tailored for spatial data

○ stLearn : built on scanpy tailored for spatial data

○ SpatialExperiment : (similar to SingleCellExperiment)

○ And many many more...
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Clustering :: Human Breast Cancer Data

UMAP embedding Pathologist annotation 
(for reference)

Spatial distribution of
Clusters

Figure from : Spatial Deconvolution of HER2-positive Breast Tumors Reveals Novel Intercellular Relationships, Andersson et al.

13



Integration with single cell data

● Basic idea : use single cell data as a reference when working with 

spatial data.

● Answers : Where are cell types in SC data found in space?

● But why? Two main reasons :

○ Efficient use of resources. Leverage extensive annotation 

work done for single cell data.

○ Problem of mixed contributions (in Visium)
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Mixed contributions

In several of the capture based techniques (e.g., Visium and Slide-seq), observed expression values 
are contributions from multiple cells. Not all necessarily of the same type.
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Mixed contributions

● Clusters do not 
represent cell types

● Clusters are more an 
assembly of spots with 
similar composition of 
cell types.

● We have no idea what 
the cell type 
population looks like. 
Only observe 
expression
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Mixed contributions

HIDDEN

Observed

● Clusters do not 
represent cell types

● Clusters are more an 
assembly of spots with 
similar composition of 
cell types.

● We have no idea what 
the cell type 
population looks like. 
Only observe 
expression
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Our objective : deconvolve expression data 18



Integration with single cell data

Figure 2 from “Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography”, Andersson et al.

(generated with stereoscope)

● Inner : Single cell data from mouse 
brain, gt-SNE embedding. Colored by 
cluster.

● Outer : Visium data of mouse brain. 
Facecolor intensity indicates 
proportion value of cluster.
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Integration with single cell data

Extract marker genes (MG) for 
each cell type from SC data

Compute enrichment score for 
each set of MGs in spatial 

locations

Normalize to make scores sum 
to 1

Ex: Moncada et al. 

Marker gene based

Find anchors between 
modalities (MNNs). Create 
correction vector based on 
differences in expression.

Use correction vectors to 
remove platform effects. 

Integrated data sets.

Transfer labels of single cells to 
spatial data points.

Ex: Seurat

Anchor based

Assume gene expression 
follows certain statistical 

distributions.

Joint model for SC and spatial 
data. Learn cell type 

parameters from SC data, use to 
deconvolve spatial data (when 

mixed).

Correct for eventual platform 
differences

Ex: stereoscope, RCTD, 
cell2location

Probabilistic 
Modelling

Find spatial location where each 
cell is most likely to reside.

Tries to simultaneously optimize 
terms such as:

● Cell density
● UMI distribution across 

genes within spots
● gene distribution across 

spots

Ex: Tangram

Optimization based
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Integration with single cell data :: stereoscope

● Probabilistic, models single cell and spatial 

transcriptomics data with negative binomial 

distribution

● Two-step process:

1. Learn parameters from sc-data

2. Infer proportions in spatial data

● Parameters from single cell data can be 

reused, cut computational time in half.

● Accounts for missing cell types by including a 

“dummy cell types”

● “Single-cell and spatial transcriptomics 

enables probabilistic inference of cell type 

topography”, Communications Biology, 

Andersson et al.
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Integration with single cell data :: stereoscope

A

Developmental heart : DOI: 10.1016/j.cell.2019.11.025 
Mouse Brain : 10X Genomics website + mousebrain.org
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Integration with single cell data :: RCTD

● Probabilistic model for inferring cell types in spatial transcriptomics data, supervised with a labeled 
single-cell RNA-seq reference.

● Infers platform effects (or technical differences across sequencing platforms) in order to correct for 
differences between the single-cell reference and the spatial target dataset.

● RCTD uses maximum likelihood estimation to identify cell types present on each spatial transcriptomics 
spot, in addition to estimating cell type proportions.

● Robust decomposition of cell type mixtures in spatial transcriptomics, Nat. Biotech, Cable et al.

Slide courtesy of Dylan Cable. 
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Integration with single cell data :: Tangram 26

scRNA-seq

Loop 
over

Spatial 
transcriptomics Cell types mapThe Tangram method 

1.

2.

We evaluate the quality 
of mapping by computing 
the Tangram loss function

3. We use stochastic 
gradient descent to 
optimize mapping

We start by randomly 
distributing scRNA-seq 
data in the ROI

Mapped
cells

Spatial
data

Deep learning and alignment of spatially-resolved whole transcriptomes of single cells in the mouse brain with Tangram, Biancalani*, Scalia* et al. - 
Nature Methods (in press), 2021. Slide courtesy of Tommaso Biancalani.



Integration with single cell data :: Tangram 27

Assessing cross-species conservation in 
kidney

Localization of epithelial cell types in 
human lung

with Fred De Sauvage

Correction of gene expression in 
colorectal cancer

ESYT3
(measured)

ESYT3
(predicted)

SNHG14
(measured)

SNHG14
(predicted)

with Aviv Regev lab 
(Nature Methods 2021 in press)

Mouse kidney histology
Cell type maps in 

kidney

with Jay Rajagopal lab 
(in preparation)

Histology Non-epithelial 
cell map

Epithelial cell 
map

Spatial maps of cell types in 
developmental mouse brain

with Paola Arlotta lab 
(Nature 2021 in 

press)

Slide courtesy of Tommaso Biancalani.



Integration with single cell data :: which one to choose?

● Initiative to formalize problems in single cell (and spatial) analysis. Includes proper definition.

● Provide datasets for unbiased evaluation of data, and define metrics to be used.

● Build framework for said evaluation.

● Allows you to make informed choice.

● https://openproblems.bio/
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Spatially aware methods

Basic Idea : Attempts to include knowledge of spatial structure 

in the analysis, not only to visualize results.

Designed for tasks like :

● Identifying spatially variable genes and features
○ Why not just select highly variable genes (more later)

● Finding spatially coherent expression domains

● Leverage spatial proximity to increase robustness of 

inference (e.g., CNA inference)

● Find local correlations between features
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Spatially Variable Genes

● Sort expression profiles into 

spatially variable or not.

● SpatialDE, SVCA and SPARK use 

probabilistic models

● Leverage  Gaussian Processes to 

model data

● Essentially, test whether a 

“spatial” term in the covariance 

function significantly increase 

model’s ability to explain data
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Spatially Variable Genes

● sepal is not probabilistic

● Uses finite differences to 

simulate diffusion of transcripts.

● Measures time util converges

● Ranks genes by the time it takes 

to converge.

● Key Idea : The longer the time, 

the more structured the initial 

state.

sepal: identifying transcript profiles with spatial patterns by diffusion-based modeling, 
Andersson and Lundeberg (Oxford Bioinformatics)
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Spatially Variable Genes

● 20 Expression profiles from 
mouse brain

● Shuffle spots to get random 
expression profiles. Has 
“shuf” prefix.

Observed Profiles Shuffled Profiles
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Spatially Variable Genes

● Variance or dispersion metrics renders exactly the same value (gray) for shuffled and non-shuffled profiles

● sepal’s ranks real profiles higher than shuffle ones (spatial structure considered)

● Similar results obtained for other methods as well (SpatialDE, SPARK, etc)
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Spatials domain patterns

● Normal clustering mainly focus 
on gene expression

34



Spatials domain patterns

● Normal clustering mainly focus 
on gene expression
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● Leverage spatial information to 
find spatially coherent clusters 
(domains)

● Common to use HMRF (Hidden 
Markov Random Field)

● Construct a graph based on spatial 
proximity

● Probability of node (spot) 
belonging to a specific domain 
depends on:

○ Agreement with domain 
expression profile

○ Coherence with neighbors

Example : Identification of spatially associated subpopulations by combining scRNAseq and sequential 
fluorescence in situ hybridization data”, Zhu et al.
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Spatially aware methods :: STARCH and scHOT

● Name : STARCH

● Infer Copy Number Aberrations (CNA) from spatial 

transcriptomics data

● Increase robustness of inference by aggregating data in same 

domains (similar profiles)

● Also uses Hidden Markov Random Fields (HMRF)

● “STARCH: Copy number and clone inference from spatial 

transcriptomics data”, Elyanow et al.
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Spatially aware methods :: STARCH and scHOT

● Name : STARCH

● Infer Copy Number Aberrations (CNA) from spatial 

transcriptomics data

● Increase robustness of inference by aggregating data in same 

domains (similar profiles)

● Also uses Hidden Markov Random Fields (HMRF)

● “STARCH: Copy number and clone inference from spatial 

transcriptomics data”, Elyanow et al.

● Name : scHOT

● Computes (spatially) weighted correlations to 

find local correlations.

● “Investigating higher-order interactions in 

single-cell data with scHOT”, Ghazanfar et al.
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Spatially aware methods :: MULTILAYER

“Inferring biologically relevant molecular tissue substructures by agglomerative clustering of digitized spatial 
transcriptomes with multilayer”, J Moehlin

● Inspired by digital image processing. 
Introduces terminology of “gexels”.

● Looks at relative gene expression of each 
gexel compared to the rest. Find locally up 
and down-regulated genes.

● Uses agglomerative clustering to find 
contiguous patterns that share similar 
structures (co-expression modules)

● Extracts communities (clusters) from 
co-expression modules by using Louvain 
clustering.
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Spatiotemporal Modeling :: Splotch

Image adaptation from : Splotch: Robust estimation of aligned spatial temporal gene expression data, T Äijö et al. (Supplementary Figure 1,2)

● Hierarchical generative probabilistic 

model for analyzing Spatial 

Transcriptomics data

● Uses Zero Inflated Poisson (ZIP) 

regression model to account for:

○ Tissue region context

○ Local components

○ Spot effects  

● Also aligns sections

● Can identify genes that changes over 

both space and time

38
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Sneak Peek :: eggplant
● New method (eggplant) that maps features (gene 

expression, cell type proportions) to a common 

coordinate framework (CCF)

● Allows user to define a reference and then transfer 

feature values to it

● Enables spatiotemporal modeling and facilitates 

construction of atlases

Andersson et al. In preparation. Developmental Heart data by Andrusivová  Ž.
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Deep Learning

Basic Idea : Apply deep learning to spatial data (very broad)

Fairly nascent : Relatively few examples. Limited amount of high 
quality available data.

Current examples :
● XFuse : “superresolution” (pixel) of gene expression by 

learning joint representation of image and expression data.

● stPlus : Uses scRNA-seq data and autoencoders to enhance 

spatial transcriptomics data

● SpaGCN : simultaneous domain and SVG detection using 

graph convolution layers

● RESEPT : Uses graph convolutional network to embed 

spatial data in RGB space, then uses a CNN to segment data 

into spatially coherent tissue domains
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Deep Learning :: XFuse

From : “Super-resolved spatial transcriptomics by deep data fusion”, Bergenstråhle 
et al.  (in press Nature Biotechnology)
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Computational suites :: squidpy

“One framework to rule them all, one framework to find them…”

● Similar philosophy as scanpy, uses same kind of API, built 
on AnnData objects

● Tailored towards spatial data with support for multiple 
different experimental platforms (not only Visium)

● Easy to construct spatial graphs and perform graph 
operations

● Has great interface with ML ecosystems such as PyTorch, 
TensorFlow and sklearn

● Simplified my life a lot and something I tend to use now in 
method development

● (Also has sepal integrated into the suit)

42
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Observations from the wild



General advice

● Batch effects between sections are usually observed, try to account for this. Single cell methods have worked great so far. 

● Cell density is often not homogeneous across tissue. Good idea to normalize based on the library size to account for this.

● Keep in mind that expression profiles are mixtures, often it makes more sense to analyze them accordingly; looking at factor contributions 

rather than hard cluster identities.

● Single cell mapping is often improved by use of HVG genes or curated lists

● Trajectory inference is tricky, no method that I’m aware of accounts for the fact that several temporal states might be present at each 

observation. Incorporation of spatial information has been done fairly heuristically so far.

● Filtering ribosomal, mitochondrial and Hb-genes usually have a positive effect on the result. They usually constitute irrelevant sources of 

variation. However, keep them if relevant!

● Use the image to visualize and inspect your data, one of the best quality checks there is. Always ask yourself:  “does this make sense”?
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A spatial survey of HER2-positive breast cancer

“Spatial deconvolution of HER2-positive Breast cancer delineates tumor-associated cell type interactions”, Andersson et al. (in 
press Nature Communications)
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Spatial Data
Human Breast Cancer

HER2-positive 

Spatial data : Linnea Stenbeck | SC data : Swarbrick Lab 

SC Data
Human Breast Cancer

Multiple types (incl. HER2)

Human HER2-positive breast cancer 45



Proportion estimated overlaid on tissue

Plasma Cells

Epithelial Cancer Memory B-cells

CD4+ T-cells

Pro
p

o
rtio

n

1.0

0.0
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● Find cell types with similar spatial distributions

● Confirms previous observations

○ Plasma cells and Epithelial Cancer 

anticorrelate

○ Memory B-cells and CD4+ T-cells co-localize 

Cell type co-localization 47



● Find cell types with similar spatial distributions

● Confirms previous observations

○ Plasma cells and Epithelial Cancer 

anticorrelate

○ Memory B-cells and CD4+ T-cells co-localize 

Cell type co-localization 48



TLS : Tertiary Lymphoid Structures

● Characterized by high presence of B and T-cells

● Interesting for several reasons

○ Partially dictates degree of TILs (Tumor Infiltrating Lymphocytes)

○ Implications in tumor treatment and outcome

● Question : Can we locate TLSs in our samples?
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Searching for TLS-sites

B-cells T-cells
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Searching for TLS-sites

B-cells T-cells TLS
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Characterizing the expression landscape of TLSs

Set of 
TLS-related genes:

CXCL13
LTB

CXCR5
...

β
0
 + β

1
[Gene 1] + …. + β

N
[Gene N] 

Functional
 Enrichment

-log10(p
adj

)

GO:BP

TLS-score
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A spatial survey of HER2-positive breast cancer

“Spatial deconvolution of HER2-positive Breast cancer delineates tumor-associated cell type interactions”, Andersson et al. (in 
press Nature Communications)
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 https://doi.org/10.1101/2020.07.14.200600 



Spatial gene expression dynamics in the mouse liver

“Spatial Transcriptomics to define transcriptional 
patterns of zonation and structural components in the 
liver”, Hildebrandt and Andersson et al. 
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 https://doi.org/10.1101/2021.01.11.426100 



Spatial gene expression dynamics in the mouse liver

● Portal and central veins have 
certain marker genes 
associated with them

● Key concept : Marker gene 
expression is dependent on 
distance to the veins

PM : Portal Marker
CM : Central Marker
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Expression as function of distance

● Model gene expression as a function of 
the distance to respective vein

Figure adapted from  “Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in 
the liver”, by Hildebrandt and Andersson et al.
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Distance to vein

Blue curves : expression as a function of distance to portal veins
Red curves : expression as a function of distance to central veins



Expression as function of distance 55

Distance to vein

Blue curves : expression as a function of distance to portal veins
Red curves : expression as a function of distance to central veins

● Model gene expression as a function of 
the distance to respective vein

Figure adapted from  “Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in 
the liver”, by Hildebrandt and Andersson et al.



Expression as function of distance

● Objective : Unsupervised classification of vein 
types

● Implementation : 

○ Construct neighborhood expression 
profile (NEP).

○ Train logistic classifier on NEPs from 
(expert annotated) veins

○ Predict vein type based on NEP for 
un-annotated veins. Gives probabilistic 
assignment.

From “Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the liver”, by 
Hildebrandt and Andersson et al.
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Summary

● Tons of spatial techniques

○ I’m very fond of Visium, but you should always pick whatever is best for you!

● Ever increasing repertoire of computational methods!

○ Be careful when transferring single cell methods, make sure the methods’ assumptions are valid

○ A lot of tools out there, but sometimes beneficial to construct custom solutions

● Don’t just treat spatial data as a different form of single data, it has much more to 

offer
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Thank you for the attention!

https://github.com/almaan https://almaan.github.io @aalmaander



Integration with single cell data :: stereoscope

● Single cell data usually modelled as overdispersed Poisson distribution (Negative 

Binomial). Basis for several analysis methods (Normalization, DE, etc.)

● Applicable to ST/Visium data as well

C
lu
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st

er
 1

Similar trends for all 
clusters and genes. 

Supports NB 
distribution, also 
when corrected for 
increased parameter 
number compared to 
Poisson).

Visium data Mouse Brain
Colored by cluster

Figure Supplementary “Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography”, 
Andersson et al.
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