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e Name : Alma Andersson
e Part of : Lundeberg Lab (PhD Student)
e Works with : Computational Method Development

o Mainly focus on spatial transcriptomics data

e Background :
o  Engineer by training
o  Before: Molecular Dynamics
o Now: Spatial Transcriptomics

e Work:

o  Single cell and spatial transcriptomics data integration (stereoscope)

o Model to find spatially variable genes (sepal)
o  Spatial characterization of HER2 breast cancer samples
o Common coordinate frameworks for spatial data
e Non-scientific Interests
o  Trail/Ultrarunning, Hiking, Outdoor stuff
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[ Introduction ]

Broad overview of experimental spatial transcriptomics techniques
A Recap on Visium
Data character - what are we working with?

[ Computational methods and frameworks ]
—e Different flavors of currently available methods
o Example methods
o Extra focus on single cell mapping and integration
o squidpy : a framework for handling spatial data
[ Observations from the wild ]
General advice
—o Example : A spatial survey of HER2-positive breast cancer
—e Example : Spatial gene expression dynamics in the mouse liver

Sci Lab
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[ Introduction ]

Broad overview of experimental spatial transcriptomics techniques
A Recap on Visium

Data character - what are we working with? Slides ::

lectures/spatial_transcriptomics.pdf

[ Computational methods and frameworks ]
—e  Different flavors of currently available methods https://almaan.github.io/extras/advsc-info/
o Example methods
—eo Extra focus on single cell mapping and integraton T~ TTTTTTo-TsTsTsssE s s EE T E ST S
o squidpy : a framework for handling spatial data
[ Observations from the wild ]
General advice
—o Example : A spatial survey of HER2-positive breast cancer
—e Example : Spatial gene expression dynamics in the mouse liver

Sci Lab
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Future
Technologies

in-situ
capture

Microdissection

Spatial
Transcriptomics

in-situ
hybridization

in-situ
sequencing

in-silico
reconstruction

Sci Lab

Categories from : Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration, Asp et al.
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Future

) [ Microdissection-based technologies
Technologies

Isolate a region of interest, place isolate in separate
well and sequence (either by bulk or single-cell
methods).

) in-situ

capture

\
/

Spatial A “Brute Force” approach.

Transcriptomics

Examples : LCM, Tomo-seq, TIVA, ProximID,
Niche-seq

in-situ
hybridization

in-situ
sequencing

In-silico
reconstruction

Sci Lab

Categories from : Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration, Asp et al.
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Future
Technologies

in-situ
capture

Microdissection

Spatial
Transcriptomics

in-situ
hybridization

in-situ
\ sequencing

In-silico
reconstruction

Categories from : Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration, Asp et al.

[ In-situ sequencing based methods

Sequence the transcripts in place.
Offer sub-cellular resolution. Some relies on “a

priori” defined targets, but not all.

Examples : ISS/Cartana (padlock probes), BaristaSeq,
STARmap, FISSEQ

Sci Lab
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Future

. [ In-silico reconstruction
Technologies

Infer and reconstruct spatial structure from
non-spatial data (e.g., single cell).

in-situ
capture

Microdissection

Spatial Examples : novoSpaRc, CSOmap, Seurat v3

Transcriptomics

in-situ in-situ
sequencing /-~ """~~~ hybridization

In-silico
A \
\ reconstruction ,

REIEEREIY ’ Sci Lab

Categories from : Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration, Asp et al.
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Future
Technologies

in-situ
capture

Microdissection

Spatial
Transcriptomics

in-situ R,
hybridization //

in-situ
sequencing

In-silico
reconstruction

[ In-situ hybridization based methods

Labeled probes for specific targets, hybridize in place.
Requires “a priori” defined targets.
Expansion strategies and smart decoding scheme has

helped to overcome spectral overlap.

Examples : smFISH, seqFISH, MERFISH, seqFISH+,
osmFISH, RNA Scope, DNA microscopy

Sci Lab

Categories from : Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration, Asp et al.
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Future

[ In-situ capture based methods

Technologies

in-situ R

Microdissection
capture //

Spatial
Transcriptomics

- = - -

in-situ
hybridization

in-situ
sequencing

in-silico
reconstruction

Categories from : Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration, Asp et al.

Capture transcripts in situ but sequence ex situ.
Usually less dependent on prior selection of targets.

Examples : Visium, ST, Slide-Seq, HDST, GeoMX,
Apex-Seq, Stereo-SEQ

Sci Lab
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/ \
/ Future \
. \
(\ Technologies

in-situ
capture

Microdissection \*————— -

Spatial
Transcriptomics

in-situ
hybridization

in-situ
sequencing

in-silico
reconstruction

nature methods

Method of the Year2020:
Spatially resolved transcriptomics

Categories from : Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration, Asp et al.

5 & 3

results per 100 000

PubMed results

SE33288588 8 S0 8RR 28

Search: Spatial Transcriptomics

Sci

Lab
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Future
Technologies

in-situ
capture

Microdissection

Spatial
Transcriptomics

in-situ
hybridization

in-situ
sequencing

in-silico
reconstruction

Categories from : Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration, Asp et al.

Further Readings

Spatially Resolved Transcriptomes—Next Generation Tools for Tissue
Exploration

Authors : Michaela Asp, Joseph Bergenstrahle, Joakim Lundeberg
Published : 2020-05-04

DOI: 10.1002/bies.201900221

Spatially resolved transcriptomics adds a new dimension to
genomics

Authors : Ludvig Larsson, Jonas Frisén & Joakim Lundeberg
Published : 2021-01-06

DOI: 10.1038/541592-020-01038-7

Museum of Spatial Transcriptomics

Authors : Lambda Moses and Lior Pachter
Published : 2021-05-12

Link: https://pachterlab.github.io/LP_2021/

Sci Lab [
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Future
Technologies

in-situ
capture

Microdissection

Spatial
Transcriptomics

- - -

in-situ
hybridization

in-situ
sequencing

In-silico
reconstruction

Image from : https://www.10xgenomics.com/products/spatial-gene-expression

ST /O/
\\// eeegfeg 1 O,\

GENOMICS

Sci Lab &
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Tissue + Permeabilize and
Visium array capture mRNA

8
N v >
& & & &
3 3 7
Sequence cDNA with
. Relate gene
spatial barcodes . i
expression to physical

location

Sci ' Lab [
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e Array based technique
e 6.5mm x 6.5mm area to put sample on
e 4992 spots arranged in hexagonal grid

e Array specs:
©  Spot diameter : 55um
o  Center to center distance : 100 um

® Successor to Spatial Transcriptomics (ST)
Data processing often includes :
o Genome mapping and annotation
o  Spatial barcode demultiplexing
e Approx. 1-10 cells contribute to each spot
o NOTE : Not single cell resolution!

e Data represented as [spot] x [gene] matrix
e You also get HE-image of the same tissue

https://kb.10xgenomics.com/hc/en-us/articles/360035487572-What-is-the-spatial-resolution-and-configuration-of-the-
capture-area-of-the-Visium-Gene-Expression-Slide-
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e Example with Human Breast cancer data
o  Public data : Available at 10x website

Spots Only Spots + HE image Spots + ERBB2 expression + HE image

Facecolor intensity proportional o
to gene expression value SCIH*{”‘)“‘BLab I I . -
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Single cell inspired methods

& ‘ - ﬁ Integration with single cell data
xS *®
.

Factor1 Factor2  Factor3

Single Cell

B> (=0

Pseudotime

Spatial

Velocities

Spatially aware methods

§§£§ S i Spatial Transcriptomics _ Deep learning
&2 Yes No Data ,%
E@ HMRF “;.’_
: ~ 1 6D .
e g
& @ cotoltos Spatiotemporal models E

OBEB

>

Time

Sci
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e Basicidea: apply existing methods and tools developed for

single cell data.

e Examples:

©)

O

©)

Cluster spatial data, show clusters in space
Factor models for data decomposition
Trajectory Inference

e Suites/Tools:

©)

O O O O O

Seurat : added support for spatial data

Scanpy : added support for spatial data

STUtility : built on Seurat tailored for spatial data
stLearn : built on scanpy tailored for spatial data
SpatialExperiment : (similar to SingleCellExperiment)
And many many more...

12

Single cell inspired methods

&
k&

~ 85

am.

Factor 1 Factor 2 Factor 3

Velocities

Sci

Expression

Pseudotime

Lab @
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Pathologist annotation ~ Spatial distribution of

UMAP embedding
(for reference) Clusters

cluster

® 0:cancer 1

® 1:immune : B/plasma cells
: adipose

:immune : APC, B-cell, T-cell

: cancer 2

2
3
4: cancer in situ : immune rich
5
6

UMAP_2

: cancer : connective tissue

UMAP 1

Figure from : Spatial Deconvolution of HER2-positive Breast Tumors Reveals Novel Intercellular Relationships, Andersson et al. SCI Lab
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-1 1 Integration with single cell data

e Basicidea: use single cell data as a reference when working with ) ) .
Integration with single cell data

spatial data.

® Answers : Where are cell types in SC data found in space?

Single Cell

e But why? Two main reasons :

0 . Leverage extensive annotation

work done for single cell data.

(=5

Spatial

o  Problem of (in Visium)
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Spot 1 Spot 2 Spot 3

In several of the capture based techniques (e.g., Visium and Slide-seq), observed expression values
are contributions from multiple cells. Not all necessarily of the same type.

Sci Lab

atp,
§KTHY
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Y

e C(Clusters do not

represent cell types
% ® Clusters are more an
assembly of spots with
similar composition of

Cluster

x x cm @ cell types.
1 P We h idea what
Population| ¥ ¥ B (@0 oehavenoideawhs
. . x X ® . population looks like.
Only observe
expression
Expression I' |" “'I
scii ~Lab @ | 1 I IR
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e C(Clusters do not

represent cell types
% ® Clusters are more an
assembly of spots with

similar composition of
cell types.

Cluster

POpU|aﬁOﬂ HIDDEN ° :/:\/Z EZI\I/(?[ynpc;idea what
population looks like.

Only observe
expression

Expression

Observed Sci
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B ERllour objective : deconvolve expression data

We want this

Spot 2 Spot 3

Spot 1
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e Inner : Single cell data from mouse
brain, gt-SNE embedding. Colored by
cluster.

e Outer : Visium data of mouse brain.
) Facecolor intensity indicates
proportion value of cluster.

A - Astrocytes
| - Immune | e
N - Neurons
O - Oligos

V - Vascular

Ep - Ependymal
Ex - Excluded

~ N18

(generated with stereoscope)

Figure 2 from “Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography”, Andersson et al. SCI Lab
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20

Marker gene based

Anchor based

Probabilistic
Modelling

Optimization based

Extract marker genes (MG) for
each cell type from SC data

Compute enrichment score for
each set of MGs in spatial

locations

Normalize to make scores sum
tol

Ex: Moncada et al.

.

Find anchors between
modalities (MNNs). Create
correction vector based on

differences in expression.

Use correction vectors to
remove platform effects.

Integrated data sets.

Transfer labels of single cells to
spatial data points.

Ex: Seurat

/

.

AN

Assume gene expression
follows certain statistical
distributions.

Joint model for SC and spatial
data. Learn cell type
parameters from SC data, use to
deconvolve spatial data (when
mixed).

Correct for eventual platform
differences

Ex: stereoscope, RCTD,
cell2location

.

Sci Lab

/

Find spatial location where each
cell is most likely to reside.

Tries to simultaneously optimize
terms such as:
e Cell density
e UMl distribution across
genes within spots
e  gene distribution across
spots

Ex: Tangram

/
1]
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® Probabilistic, models single cell and spatial
transcriptomics data with negative binomial
distribution Spatial Data

Capture Location

Single Cell Data

Cell Type 3

® Two-step process:

Observed
>
%

Cell Type 1

1. Learn parameters from sc-data

Cell Type 2

2. Infer proportions in spatial data Probabilistic

ET_,
oWT

g 2::: === — = proportion
g l . : ¢ o _ : _ : : : : : inference Parameter Estimation
. 1 ene = — = = = = = = (Negative Binomial based model)
e Parameters from single cell data can be =y e s s s e s s ik Wh mm m
reused, cut computational time in half. Gptiee " " ”
8 'Ce Type Cell Type 2 Cell Type 3 NB(rg py NB rg pg) NB(rg pJ)
= ) ~— —n————
. . . . qq_) XlS‘ .' ::
® Accounts for missing cell types by includinga £ ) § @@ I x |G|
”dummy CE“ typeS” PF:&U; ons Spatial Cell Type Distribution

o  “Single-cell al . .
Single-ce andls.pa.tlé transcriptomics https://github.com/almaan/stereoscope
enables probabilistic inference of cell type
topography”, Communications Biology,

Andersson et al. Sci
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A Ventricular 1( Atrial 1 Smooth Muscle B Ependymal Cells [ Neurons W Neurons )
Cardiomyocytes Cardiomyocytes Cells (Cluster 47) (Cluster 59) (Cluster 27)

. 2 ’ ’
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Developmental heart : DOI: 10.1016/j.cell.2019.11.025

Mouse Brain : 10X Genomics website + mousebrain.org


https://doi.org/10.1016/j.cell.2019.11.025
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Spatial transcriptomics

scRNA-seq reference

o
c °
] hd iy
B P oo @ Purkinje
o ® @ Bergmann
5 ® Granule
S

[ ]
o |®, P T
g|esse °®
w

Expression dimension 1

Robust cell-type decomposition (RCTD)

Observed pixel

0
®:

=)
Gene 1 2 3 4

v

Reference-based
probabilistic model

Yu | )u ~ Poisson(N’},’v ) K

I

byl B~ LN (! “‘kz Bighii)
=1

Maximum-likelihood cell-type assignment
Doublet mode «— ‘ —> All cell types

[—4

T
Proportio

\S

25

Spatial map of cell types

®  Probabilistic model for inferring cell types in spatial transcriptomics data, supervised with a labeled
single-cell RNA-seq reference.
e Infers platform effects (or technical differences across sequencing platforms) in order to correct for
differences between the single-cell reference and the spatial target dataset.
®  RCTD uses maximum likelihood estimation to identify cell types present on each spatial transcriptomics
spot, in addition to estimating cell type proportions.
® Robust decomposition of cell type mixtures in spatial transcriptomics, Nat. Biotech, Cable et al.

Slide courtesy of Dylan Cable.

Sci

Lab
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Spatial

The Tangram method

scRNA-seq

mPVM

Clusters :
in ROI & Loop

PYTHRCH

We start by randomly
distributing scRNA-seq
data in the ROI

Spatial

data e evaluate the quality

D of mapping by computing
the Tangram loss function

We use stochastic
gradient descent to
optimize mapping

over

Deep learning and alignment of spatially-resolved whole transcriptomes of single cells in the mouse brain with Tangram, Biancalani*, Scalia* et al. -

Nature Methods (in press), 2021. Slide courtesy of Tommaso Biancalani.

26

Astro (426) Meis2 (1)
Endo (54) ® Micro-PVM (192)
® L2/31T(587) ® Oligo (668)
L5 ET (147) ® Peri (26)
® L51T(852) ® Pvalb(171)
L5/6 NP (121) @ Sncg (18)
® L6CT(524) Sst (97)
L6 IT (135) Sst Chodl (5)
® L6b (49) ® VLMC(39)
® LampS5 (56) Vip (66)

EITANGRAM
Sci' ~Lab I I . -
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Spatial maps of cell types in
developmental mouse brain

E135 Apical Intermediate Migrating Immature Ca!aIRelzlus
progenitors  progenitors  neurons  neurons  cells

B
E15.5 Apical Interm. Migrating CThPN SCPN  CPN. Ca\dal Retzius
prog. prog.  neurons L5&6 cells
% rl LR © with Paola Arlotta lab
§ sosipr 55 O (Nature 2021 in

press)

Localization of epithelial cell types in

human lung
Non-epithelial  Epithelial cell
cell map map

ﬁr : with Jay Rajagopal lab
(in preparation)

Histology

Slide courtesy of Tommaso Biancalani.

Assessing cross-species conservation in

kidney

Mouse kidney histology

Cell type maps in

kidney
TAL of Loop Connecting Principal
of Henle tubule cell

with Aviv Regev lab
(Nature Methods 2021 in press)

Correction of gene expression in
colorectal cancer

ESYT3 SNHG14 SNHG14
(predicted) (measured) (predicted)

b4

Sci Lab [
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e Initiative to formalize problems in single cell (and spatial) analysis. Includes proper definition.
e Provide datasets for unbiased evaluation of data, and define metrics to be used.

e Build framework for said evaluation.

Open Problems in
Single-Cell Analysis

e Allows you to make informed choice.

e https://openproblems.bio/

[new task] Spatial decomposition #309

giovp wants to merge 47 commits into openprobl
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Spatially aware methods
Basic Idea : Attempts to include knowledge of spatial structure

in the analysis, not only to visualize results.

Variable

Gene B Gene A Spatially

Designed for tasks like :

e Identifying spatially variable genes and features
o Why not just select highly variable genes ( )

® Finding spatially coherent expression domains

® Leverage spatial proximity to increase robustness of
inference (e.g., CNA inference)

® Find local correlations between features

Sci'  Lab [
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Gene g
‘r«'\ -y

~ |x#Genes
| &

)] il o
-

Spatial gene expression

N

Exhibit Spatial Pattern No Spatial Pattern

INE

[9A3] uoissaldx3

30

Sort expression profiles into
spatially variable or not.

SpatialDE, SVCA and SPARK use
probabilistic models

Leverage Gaussian Processes to
model data

Essentially, test whether a
“spatial” term in the covariance
function significantly increase
model’s ability to explain data

Sci Lab
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® ® sepalis not probabilistic
e Measure time
t=0 e Uses finite differences to

t:td
> simulate diffusion of transcripts.

e Measures time util converges

® Ranks genes by the time it takes
to converge.

e Keyldea: The longer the time,
the more structured the initial

Initial state converged state state
sepal: identifying transcript profiles with spatial patterns by diffusion-based modeling, Sci Lab

Andersson and Lundeberg (Oxford Bioinformatics)
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shuf Pmch shuf_Prkcd shuf_Hcrt shuf_Tnntl shuf_Tcf712 shuf_Baiap3 shuf_Ctxn3 shuf_Slc17a7 shuf_Mal

Prked

Tnntl Tcf712 Baiap3 Ctxn3 Slc17a7 Mal

- -

-
&

- - - - -

® 20 Expression profiles from
mouse brain

|l| ‘

heg e Shuffle spots to get random
expression profiles. Has
“shuf” prefix.

Slc30a3 Tacl Calb2 Nptxr Mog Slc17a6
. -

H ‘
N

shuf_Cldn11 shuf Slc30a3 shuf Tacl shuf_Calb2 shuf_Nptxr shuf_Mog shuf_Slc17a6 shuf_Cbinl shuf_Ugt8a shuf_Mag

- | I I II ‘l - - ” -

I Observed Profiles Shuffled Profiles
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100 - e - 800
0.75 1 Variance '500§
+3 0501 - 400 ©
| -
025 1 F200 S
000 L T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 0
c o tEog MM g EAmeA s DWW A T DE D AN MM B AN DO A oo
uuu‘é‘to.cnuzb—-—cmgr._:ﬁom_gggmugu‘étn::ruzp_r-qwugucurugggm
EffER 85" Egfo e g R EE iR EEs0 E0R822585%
“ v n "5“5_5“5"5.,5“‘5\""'5 w—'zl_assﬁmlsgﬁ
" EHE 25 S 25 EETS R4
_ - & -
Profile
e \Variance or dispersion metrics renders exactly the same value (gray) for shuffled and non-shuffled profiles
® sepal’s ranks real profiles higher than shuffle ones (spatial structure considered)
[ J

Similar results obtained for other methods as well (SpatialDE, SPARK, etc)

Sci Lab
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e Normal clustering mainly focus

. on gene expression
Favored Disencouraged

Gene Expression
Space

UMAP-1 UMAP-1

Sci Lab
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Mmoo ooooooooooooooooooooooog e Normal clustering mainly focus
on gene expression

o  Coherence with neighbors

™ Favored
E = S : ® lLeverage spatial information to
i % @ - : find spatially coherent clusters
—_ 1 > v Q : .
x | O § é | (domains)
% : E prl e Common to use HMRF (Hidden
0 i = & ! Markov Random Field)
w 2 O
% S oW e ! e Construct a graph based on spatial
[~ Favored Disencouraged | proximity
© ! , , | :
B ' v . : e  Probability of node (spot)
& ! ® : i belonging to a specific domain
! :c% A : depends on:
B .
. = : — ! :
! 1 (O ' 1
: Q. 1 !
: EU') > > : :
L L’ L’ .

____________________________________________________________________

Example : Identification of spatially associated subpopulations by combining scRNAseq and sequential SCI Lab £
fluorescence in situ hybridization data”, Zhu et al.
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(@)

(b)

Spatial Transcriptomics Data Clone Assignment

E5 N X

I STARCH Clone Copy Number Profiles

ST il

chromosomes

[ ] Clone-specific

— hidden state path
(558 760l & 181 .
chromosomes

Hidden Random Field Z
Observed Data X
Genes

i
EELETIZTE

chromosomes

Name : STARCH

Infer Copy Number Aberrations (CNA) from spatial
transcriptomics data

Increase robustness of inference by aggregating data in same
domains (similar profiles)

Also uses Hidden Markov Random Fields (HMRF)

“STARCH: Copy number and clone inference from spatial
transcriptomics data”, Elyanow et al.

Sci Lab
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(a) Spatial Transcriptomics Data Clone Assignment

7

X @c
STARCH 4ne Copy Number Profiles

[ — | \ll | ||| |||]og

IIE“E' EEJI!ISBI!

chromosomes

Spots

ec

Clone-specific
hidden state path

§ !
3858 780 & {8 - 4

(b) chromosomes

Hidden Random Field Z

Name : scHOT
Computes (spatially) weighted correlations to
find local correlations.

e  “Investigating higher-order interactions in
single-cell data with scHOT”, Ghazanfar et al.

Name : STARCH

Infer Copy Number Aberrations (CNA) from spatial
transcriptomics data

Increase robustness of inference by aggregating data in same
domains (similar profiles)

Also uses Hidden Markov Random Fields (HMRF)

“STARCH: Copy number and clone inference from spatial
transcriptomics data”, Elyanow et al.

a b Ambt Mtor Correlation of both genes
— \ 3
4 N, _!H %8 185 g‘ 3 ®
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‘-‘}‘ )y $ : u B . [
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Ve 3 4 ¥ . e : 52 ‘e i
bS & 54 1 o ‘
aadl o Lr 422 30 :; +213 o208 e
— 0.6 o4 $o0e ©° .
; ?'a"ul';laY_;" I Expression Local correlation
nternal plexiform layer
Mitral layer M . I
External plexiform layer Low High -10-05 0 05 10
Glomerular layer
Olfactory nerve layer
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Dimensionality reduction and clustering workflow I

e Inspired by digital image processing.
Introduces terminology of “gexels”.

Dimension re duction Clustering
NN

- EE
N NN
- m o

"

.'E(>§ SHw
: "

- w § .. w"anm

e Looks at relative gene expression of each .
gexel compared to the rest. Find locally up

and down-regulated genes.

Dimension 1

e Uses agglomerative clustering to find
contiguous patterns that share similar
structures (co-expression modules)

10 - 100
Similarity (%)

e Extracts communities (clusters) from

Spatial gene
Contiguous gexels mapping for gene pattern detection patterns detection.

. . . \
co-expression modules by using Louvain
clustering.

“Inferring biologically relevant molecular tissue substructures by agglomerative clustering of digitized spatial SCI

transcriptomes with multilayer”, ] Moehlin
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Spatial transcriptomics (ST) Annotation Registration of
e Hierarchical generative probabilistic Useug-sechons
model for analyzing Spatial — — o SR coordinate

—> <« iy — Ve

Transcriptomics data

A
e Uses Zero Inflated Poisson (ZIP) £ = . Spatiotemporal ¥ Exploration and
] “E) P°'Y'<tl!Tl‘:)"9?5 ;”d analysis of * visualization
regression model to account for: © [t Dare0de ST data e Expression
. o c |8 = i ~Calb1
. . -8 © | 38" S
o Tissue region context £ @ El <
g’é @1 é g = —> Slc5a7
o  Local components 62 mm TE =1 Differential expression
g 3 8| « . B
o 7] .g._ —_—
o0
© SpOt effeCtS Spatiotemporal dynamics §%
of modules B, Slesa7
e Also aligns sections ey o]t ]5
R e ad e ol e S g
e Can identify genes that changes over ] Pl Bt fu%
both space and time e

Sci

Image adaptation from : Splotch: Robust estimation of aligned spatial temporal gene expression data, T Aij6 et al. (Supplementary Figure 1,2)



11 |Spatiotempora| Modeling :: Splotch

e Hierarchical generative probabilistic
model for analyzing Spatial
Transcriptomics data

e Uses Zero Inflated Poisson (ZIP)
regression model to account for:

o  Tissue region context
o0  Local components
o  Spot effects

e Also aligns sections

e Can identify genes that changes over
both space and time

Image adaptation from : Splotch: Robust estimation of aligned spatial temporal gene expression data, T Aij6 et al. (Supplementary Figure 1,2)
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e New method (eggplant) that maps features (gene

A / Rep1_MOB. Rep2_MOB. cep o8 Repa_MOB. Revs,s e von - N\ . .
g L W ! % I expression, cell type proportions) to a common
| o ki A 1 .

GEJ i coordinate framework (CCF)

B Rep7_MOB. epl MOB; et Rep10_MOB Repl1_MOB Repl2_MOB B

O\ o e Allows user to define a reference and then transfer
N feature values to it

© 1.0

3 . : .
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Sci Lab

Andersson et al. In preparation. Developmental Heart data by Andrusivovd Z.
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Basic Idea : Apply deep learning to spatial data (very broad)

Fairly nascent : Relatively few examples. Limited amount of high
quality available data.

Deep Iearning

Current examples :
® XFuse : “superresolution” (pixel) of gene expression by

Expression

learning joint representation of image and expression data.

® stPlus : Uses scRNA-seq data and autoencoders to enhance

Image

spatial transcriptomics data

® SpaGCN : simultaneous domain and SVG detection using
graph convolution layers

e RESEPT : Uses graph convolutional network to embed
spatial data in RGB space, then uses a CNN to segment data

into spatially coherent tissue domains Sci Lab




-."Deep Learning :: XFuse 41

a. Latent tissue state Latent expression Observed expression d. Ntng1 Dusp14
S XY Gene #
Penk | 1 1 Penk 10 -
Id4 ) 111d4 8 &
""" > 21 Penk 22
21 1d4 14 2,
: : . 2
©
o

(e 8
H =
1 2
! £
............................... - Observed histology
C.
44 ELLEd i EEn
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w i w i : : 2
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o o 24 ©
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Training set size (sections)

From : “Super-resolved spatial transcriptomics by deep data fusion”, Bergenstrahle
et al. (in press Nature Biotechnology) Sci




Bl B 1| computational suites :: squidpy

“One framework to rule them all, one framework to find them...”

Similar philosophy as scanpy, uses same kind of API, built
on AnnData objects

Tailored towards spatial data with support for multiple
different experimental platforms (not only Visium)

Easy to construct spatial graphs and perform graph
operations

Has great interface with ML ecosystems such as PyTorch,
TensorFlow and sklearn

Simplified my life a lot and something | tend to use now in
method development

(Also has sepal integrated into the suit)

Image from: https://squidpy.readthedocs.io/
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Observations from the wild
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° Batch effects between sections are usually observed, try to account for this. Single cell methods have worked great so far.

° Cell density is often not homogeneous across tissue. Good idea to normalize based on the library size to account for this.

° Keep in mind that expression profiles are mixtures, often it makes more sense to analyze them accordingly; looking at factor contributions
rather than hard cluster identities.

° Single cell mapping is often improved by use of HVG genes or curated lists

° Trajectory inference is tricky, no method that I'm aware of accounts for the fact that several temporal states might be present at each
observation. Incorporation of spatial information has been done fairly heuristically so far.

° Filtering ribosomal, mitochondrial and Hb-genes usually have a positive effect on the result. They usually constitute irrelevant sources of
variation. However, keep them if relevant!

° Use the image to visualize and inspect your data, one of the best quality checks there is. Always ask yourself: “does this make sense”?




HEllA spatial survey of HER2-positive breast cancer

Manual
Annotation

v

Sample Retrieval ST Protocol

Expression based clustering

44

Cluster data by
gene expression

Extract marker genes
for each cluster

Functional Enrichment
Analysis

athway
Pathway 2
a3 ¢ | prvalue

‘ L ‘ > > ; S'\.ZE
H
Single Cell Integration
Deconvolve data and map Compute correlation values Fit model to predict
cell types spatially to asses co-localization TLS-sites
Single Cell L Correlation TLS-score
Clustering > 1 L.

w e

® . ..','_-.
N ™ Y

: ]
y=po+ Bz

“Spatial deconvolution of HER2-positive Breast cancer delineates tumor-associated cell type interactions”, Andersson et al. (in

press Nature Communications)

Sci

Lab |
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Spatial Data SC Data
Human Breast Cancer Human Breast Cancer
HER2-positive Multiple types (incl. HER2)
Spatial data : Linnea Stenbeck | SC data : Swarbrick Lab Sci Lab I I . -




-1 1 Proportion estimated overlaid on tissue

Plasma Cells

1.0

uoluodoud

0.0

Lab
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BRI Tertiary Lymphoid Structures 49

e Characterized by high presence of B and T-cells

® Interesting for several reasons

o  Partially dictates degree of TlLs (Tumor Infiltrating Lymphocytes)

o Implications in tumor treatment and outcome

® Question : Can we locate TLSs in our samples?

Sci! ' Lab [E)
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B-cells T-cells

[ 1)

Sci Lab [




Hil |Searching for TLS-sites

B-cells T-cells

e
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Sci Lab [




11 |Characterizing the expression landscape of TLSs 51

TLS-score
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Expression based clustering

Manual
Annotation Cluster data by Extract marker genes Functional Enrichment
gene expression for each cluster Analysis
¢ L’i:ii:zi E p-value
Sample Retrieval ST Protocol

i
:
L] size
| 2 . 3

aaaaaaaaaa

sg2gee
mmmmm
:::::

Single Cell Integration

Deconvolve data and map Compute correlation values Fit model to predict
cell types spatially to asses co-localization TLS-sites
Sin gl e Cell S cOrrelanon TLS-score
Clustering RS >
. e ® . e
Y > > y = po+ Bz

“Spatial deconvolution of HER2-positive Breast cancer delineates tumor-associated cell type interactions”, Andersson et al. (in
press Nature Communications)

bioRyiv https://doi.org/10.1101/2020.07.14.200600 Sci ' ~Lab f



53

11 |Spatia| gene expression dynamics in the mouse liver

[{® P ; # i 3
“’ '/ 3 1] m
" | "0 == x 1902 “Spatial Transcriptomics to define transcriptional

1ooum patterns of zonation and structural components in the
liver”, Hildebrandt and Andersson et al.

bioRyiv https://doi.org/10.1101/2021.01.11.426100

spatial annotation & \ computauonal
pathway analysis annotation

Sci' - Lab [



11 |Spatia| gene expression dynamics in the mouse liver 54

e Portal and central veins have
certain marker genes
associated with them

e Key concept : Marker gene
expression is dependent on
distance to the veins

PM : Portal Marker
CM : Central Marker

Sci - Lab




HEll Expression as function of distance

Sds , Cyp2f2 Hal Hsd17b13 ~ Aldhlb1
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Distance to vein

Blue curves : expression as a function of distance to portal veins
Red curves : expression as a function of distance to central veins

95

Model gene expression as a function of
the distance to respective vein

Sci

Figure adapted from “Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in

the liver”, by Hildebrandt and Andersson et al.



HEll Expression as function of distance
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Distance to vein

Blue curves : expression as a function of distance to portal veins
Red curves : expression as a function of distance to central veins

Figure adapted from “Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in

the liver”, by Hildebrandt and Andersson et al.

95

Model gene expression as a function of
the distance to respective vein

Sci
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Visual annotation Computational annotation

P(central) : 0.374
P(portal) :0.626

® Objective : Unsupervised classification of vein
types

e Implementation:

o  Construct neighborhood expression
profile (NEP).

o  Train logistic classifier on NEPs from
Egﬁ?ﬁﬁé?n P(portal) : 0.036 (expert annotated) veins

ambiguous
o  Predict vein type based on NEP for
un-annotated veins. Gives probabilistic
assignment.

Sci

From “Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the liver”, by
Hildebrandt and Andersson et al.
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® Tons of spatial techniques
o I'mvery fond of Visium, but you should always pick whatever is best for you!
® Everincreasing repertoire of computational methods!

o  Be careful when transferring single cell methods, make sure the methods’ assumptions are valid

o Alot of tools out there, but sometimes beneficial to construct custom solutions

° , it has much more to

offer
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Bl B 1 | integration with single cell data :: stereoscope

24

e Single cell data usually modelled as overdispersed Poisson distribution (Negative

Binomial). Basis for several analysis methods (Normalization, DE, etc.)

e Applicable to ST/Visium data as well

Eno2
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o 54
o > Iy Dist.
@ I — NegBl
9 f : =tk
17y o 1, A = Pois.
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(]
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Counts
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{l
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- 2 ' = NegBin.
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_ 7 \
O N
\
.« . . 0 20 40
Visium data Mouse Brain Counts

Colored by cluster

Figure Supplementary “Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography”,

Andersson et al.

Density

Density
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Density

Density

Dist.
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= Norm.
= Pois.

Dist.

= NegBin.

= Norm.
= Pois.

Sci

Similar trends for all
clusters and genes.

Supports NB
distribution, also
when corrected for
increased parameter
number compared to
Poisson).
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A non-comprehensive overview based on bioRxiv releases

MIA Q Seurat v3 stereoscope RCTD SPOTlight Tangram cell2location spatial DWLS
Q N N NN N N N

NMFreg

March 2019  June 2019 December 2019 May 2020 June 2020 August 2020 November 2020 February 2021

Sci - Lab
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