

Introduction to singlecell multi-omics analysis

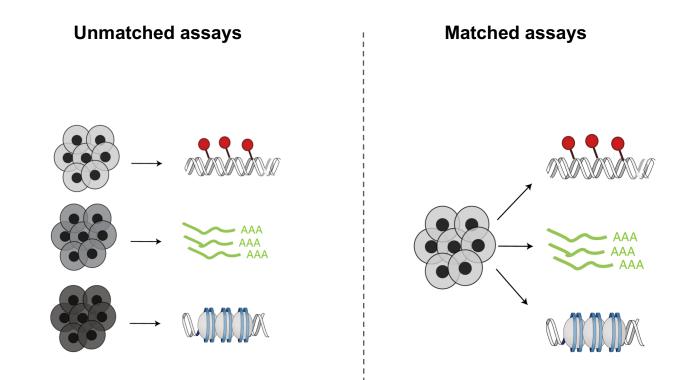
Advanced Topics in Single Cell Omics SciLifeLab-SIB Summer School 2021

Emma Dann PhD @ Sanger Institute & EBI (UK) ed6@sanger.ac.uk

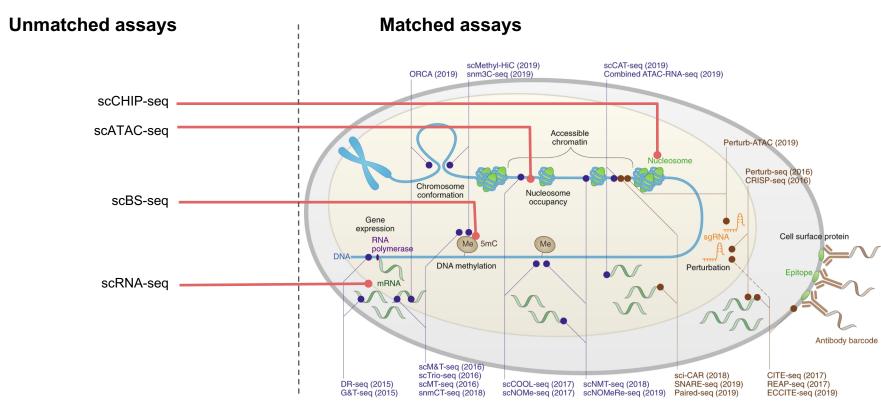
What is single-cell multi-omics?

Joint analysis of two (or more!) datasets of measurements of different molecules from single-cells

What is single-cell multi-omics?

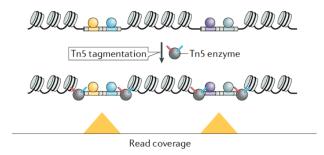


What is single-cell multi-omics?



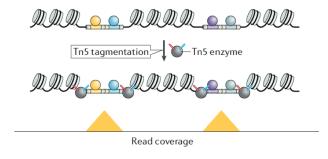
Zhu, Preissl & Ren Single-cell multimodal omics: the power of many, Nat Methods (2020)

scATAC-seq: chromatin accessibility



Minnoye et al. 2021 Chromatin accessibility profiling methods. Nat Rev Methods Primer

scATAC-seq: chromatin accessibility

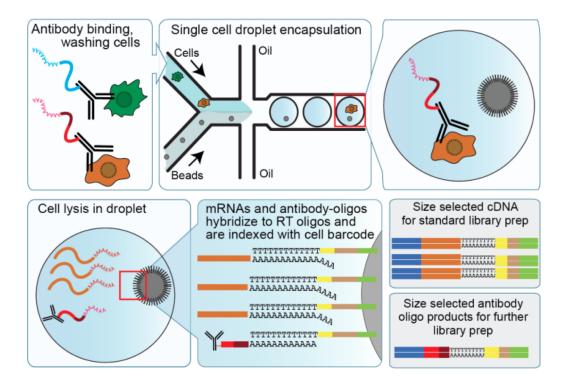


10x Barcode Attachment Post GEM-RT Single Cell Collect Pre-amplification ATAC Library GEM-RT Cleanup 10x Barcoded Single Cell Gel Beads Gene Expression Library Oil in Well Transposed Nuclei, Enzymes Transposition of Single Nuclei 10x Barcoded 10x Barcoded Nuclei in bulk GEMs Accessible DNA + RNA DNA Fragments + 10x Barcoded mRNA

10X Genomics Multiome (scRNA+scATAC)

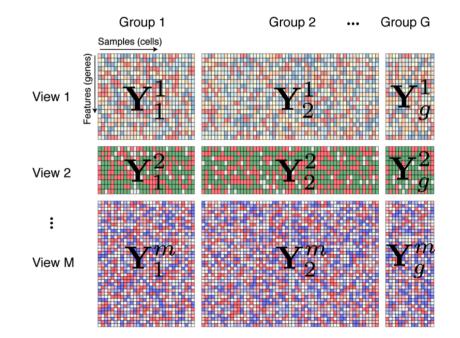
Minnoye et al. 2021 Chromatin accessibility profiling methods. Nat Rev Methods Primer

CITE-seq: mRNA expression and surface proteins



Stoeckius et al. (2017) Simultaneous epitope and transcriptome measurement in single cells

What does the data look like?



Common multi-omic analysis goals

A. Verifying consensus across modalities

A. Co-embedding in meaningful latent space

A. Reconstructing missing/noisy data

A. Identifying statistical relationships between features

Common multi-omic analysis goals

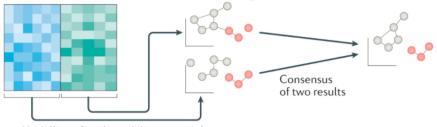
A. Verifying consensus across modalities

A. Co-embedding in meaningful latent s

A. Reconstructing missing/noisy data

Modelling of each modality separately

A. Identifying statistical relationships between features



Raw data (fragments.tsv.gz)

hg19_chr1	16205	16281	TTATGTCGTCTCAAAC-1
hg19_chr1	17124	17503	TGAGCCGGTATACGCT-1
hg19_chr1	235668	235711	CTTAATCCAAATAGTG-1
hg19_chr1	237712	237828	TCCGACTTCTTACGGA-1
hg19_chr1	237713	237792	TAGTCCCGTTAACTCG-1
hg19_chr1	237716	237782	GCCATAAGTGATCAGG-1
hg19_chr1	237716	237789	CCAATGATCCATCGAA-1
hg19_chr1	237721	237756	TGCGTAACAGGTGGTA-1
hg19_chr1	237722	237793	CCCAGAGCAAAGCTTC-1
hg19_chr1	237736	237782	GACCTTCTCACTGATG-1
hg19_chr1	521557	521596	AGATTCGGTTCTCGAA-1
hg19_chr1	521575	521611	TCACCACGTCCGTGCA-1
hg19_chr1	526022	526082	TGATGCAAGCCGCTGT-1
hg19_chr1	540966	541013	GTAGACTTCGTGGAAG-1
hg19_chr1	563390	563788	ACTGCAATCGTCCCAT-1
hg19_chr1	565288	565342	TCTCTGGTCCTGAAAC-1
hg19_chr1	565293	565322	TGAGCCGGTATACGCT-1

Raw data (fragments.tsv.gz)

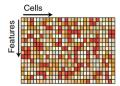
hg19_chr1	16205	16281	TTATGTCGTCTCAAAC-1	1
hg19_chr1	17124	17503	TGAGCCGGTATACGCT-1	1
hg19_chr1	235668	235711	CTTAATCCAAATAGTG-1	1
hg19_chr1	237712	237828	TCCGACTTCTTACGGA-1	1
hg19_chr1	237713	237792	TAGTCCCGTTAACTCG-1	1
hg19_chr1	237716	237782	GCCATAAGTGATCAGG-1	1
hg19_chr1	237716	237789	CCAATGATCCATCGAA-1	1
hg19_chr1	237721	237756	TGCGTAACAGGTGGTA-1	1
hg19_chr1	237722	237793	CCCAGAGCAAAGCTTC-1	1
hg19_chr1	237736	237782	GACCTTCTCACTGATG-1	3
hg19_chr1	521557	521596	AGATTCGGTTCTCGAA-1	1
hg19_chr1	521575	521611	TCACCACGTCCGTGCA-1	2
hg19_chr1	526022	526082	TGATGCAAGCCGCTGT-1	1
hg19_chr1	540966	541013	GTAGACTTCGTGGAAG-1	1
hg19_chr1	563390	563788	ACTGCAATCGTCCCAT-1	1
hg19_chr1	565288	565342	TCTCTGGTCCTGAAAC-1	2
hg19_chr1	565293	565322	TGAGCCGGTATACGCT-1	2

• Binning the genome into equally sized windows (10-50kb)

- Peak calling on pseudo-bulk profiles (MACS2)
 - Pseudo-bulk on first pass clustering on genomic bins
- Using known annotations for enhancers (e.g. in Drosophila genome)
- Other scATAC-specific feature extraction methods (BROCKMAN, scRegSeg)

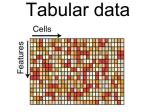
Tabular data

Tabular data



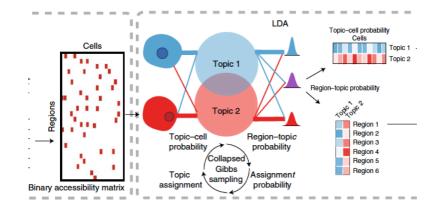
- extreme sparsity
- > 100k features
- Practically binary (most values are 1 or 0)

- extreme sparsity
- > 100k features
- Practically binary (most values are 1 or 0)

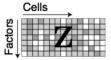


Adaptations of models used in text processing for topic extraction

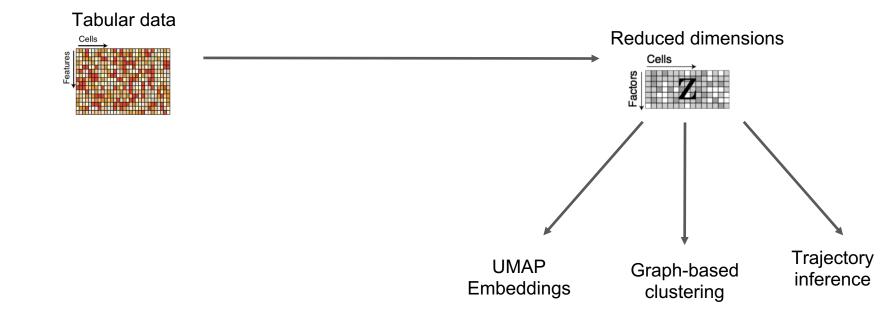
- Latent Semantic Indexing
- Latent Dirichlet Allocation (cisTopic)



Reduced dimensions



Bravo-Gonzales et al. (2019) cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data



Any questions?

Common multi-omic analysis goals

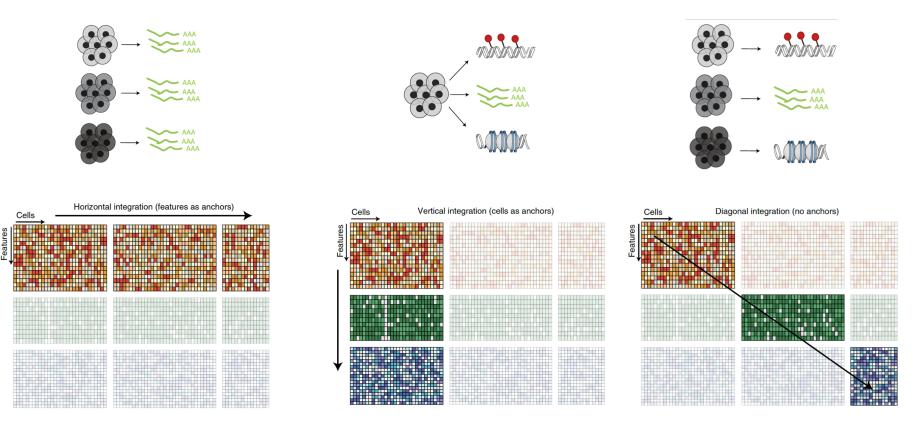
A. Verifying consensus across modalities

A. Co-embedding in meaningful latent space (integration)

A. Reconstructing missing/noisy data

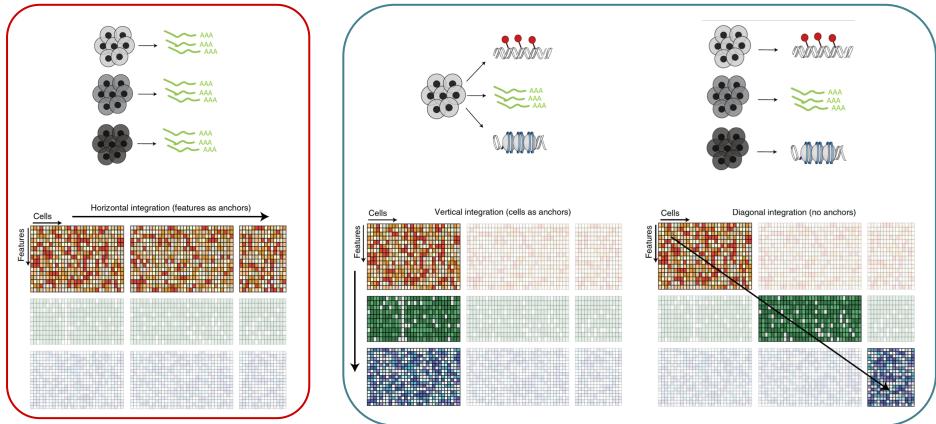
A. Identifying statistical relationships between features

Defining the integration axis



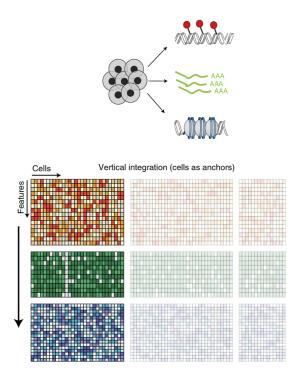
Argelaguet, Cuomo, Stegle and Marioni (2021) Computational principles and challenges in single-cell data integration. Nat Biotech

Defining the integration axis

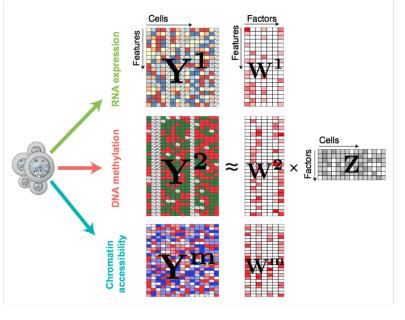


Batch correction, mapping to reference atlas

Multi-omics analysis

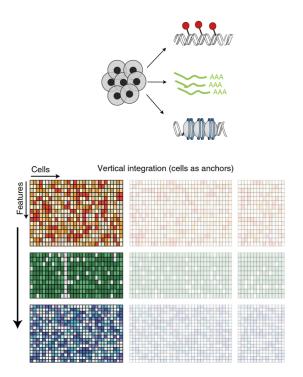


Multi Omics Factor Analysis (MOFA2)

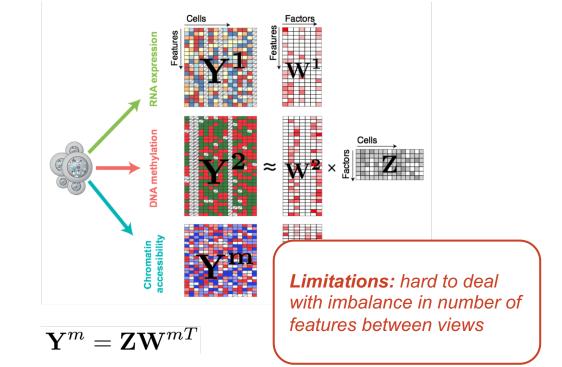


$$\mathbf{Y}^m = \mathbf{Z}\mathbf{W}^{mT}$$

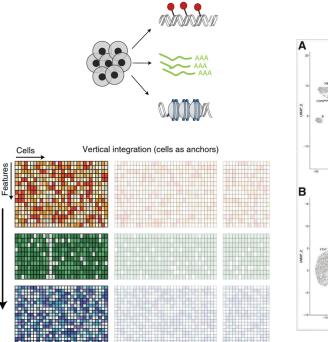
Argelaguet, Velten et al. Mol Sys Biol 2018 Argelaguet, Arnol, Bredikhin et al. Genome Biology 2020



Multi Omics Factor Analysis (MOFA2)

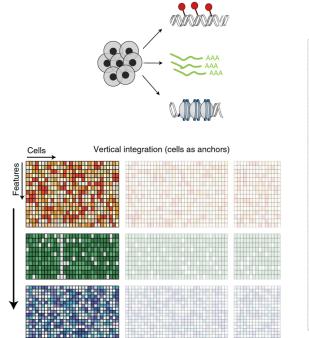


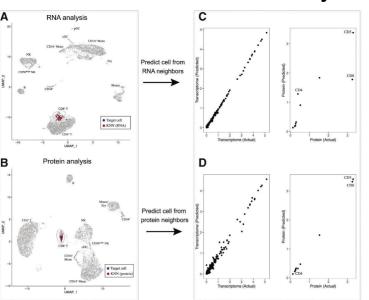
Argelaguet, Velten et al. Mol Sys Biol 2018 Argelaguet, Arnol, Bredikhin et al. Genome Biology 2020



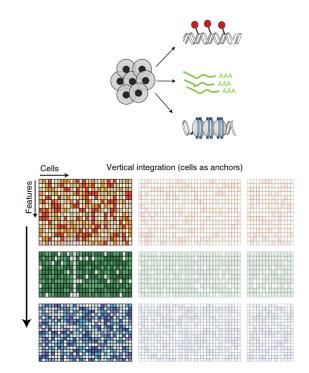
RNA analysis Target cell
KNN (RNA) Protein analysis Target cell KNN (pr

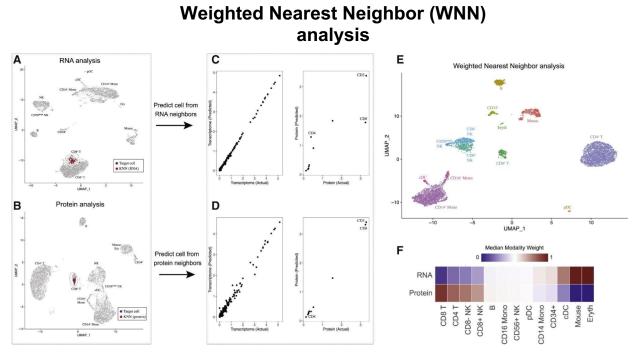
Weighted Nearest Neighbor (WNN) analysis



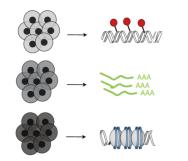


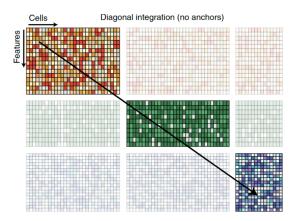
Weighted Nearest Neighbor (WNN) analysis





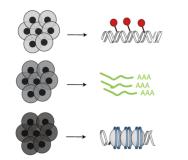


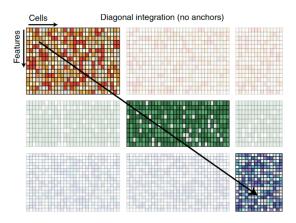




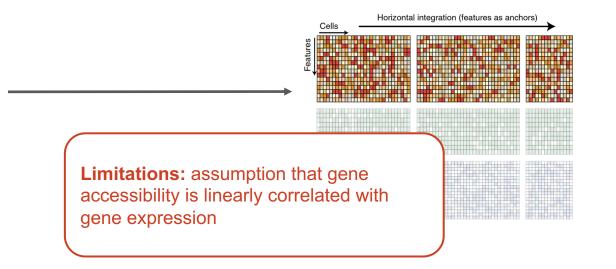
- Transform data to gene-level features (e.g. count ATAC fragments over gene bodies)
- Apply horizontal integration methods used for batch correction (Seurat CCA, LIGER)

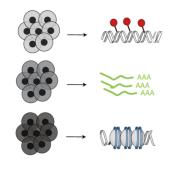
	Cell	·	Horizontal integration (features as anchors)					
•	Features							

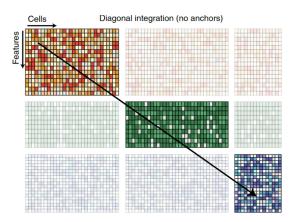




- Transform data to gene-level features (e.g. count ATAC fragments over gene bodies)
- Apply horizontal integration methods used for batch correction (Seurat CCA, LIGER)



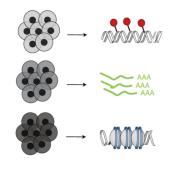


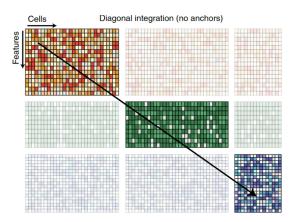


Integration with unpaired features (in order of appearance on bioRxiv)

- MATCHER (Welch et al. 2017)
- MMD-MA (Liu et al. 2019)
- SCIM (Stark et al. 2020)
- UnionCom (Cao et al. 2020)
- Cross-modality autoencoders (Yang et al. 2021)
- SCOT (Demetci et al. 2020)
- BABEL (Wu et al. 2020)
- bindSC (Dou et al. 2020)
- MultiMAP (Jain et al. 2021)
- UINMF (Kriebel et al. 2021)
- MultiVI (Ashuach et al. 2021)

• .



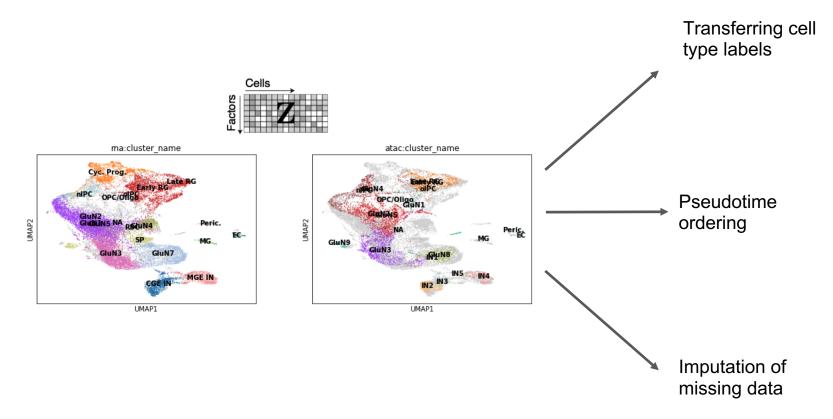


Integration with unpaired features (in order of appearance on bioRxiv)

- MATCHER (Welch et al. 2017)
- MMD-MA (Liu et al. 2019)
- SCIM (Stark et al. 2020)
- UnionCom (Cao et al. 2020)
- Cross-modality autoencoders (Yang et al. 2021)
- SCOT (Demetci et al. 2020)
- BABEL (Wu et al. 2020)
- bindSC (Dou et al. 2020)
- MultiMAP (Jain et al. 2021)
- UINMF UINMF
- MultiVI
- ...
- **Limitations:** assumption that cells lie on the same latent manifold

Any questions? Except for: which integration method is the best

Outcome: co-embedding in joint latent space



Common multi-omic analysis goals

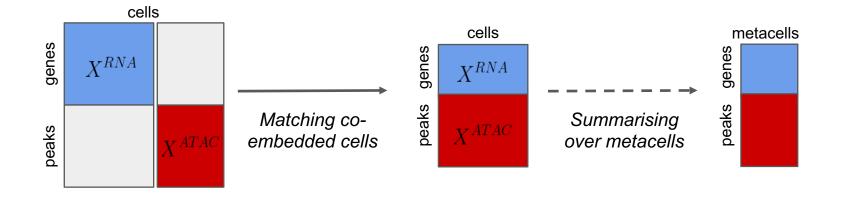
A. Verifying consensus across modalities

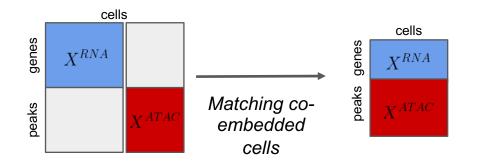
A. Co-embedding in meaningful latent space

A. Reconstructing missing/noisy data

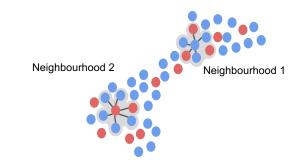
A. Identifying statistical relationships between features

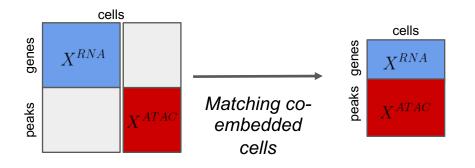
$$X_g^{RNA} = f(X_p^{ATAC})$$



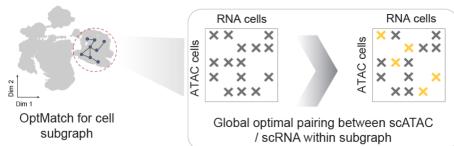


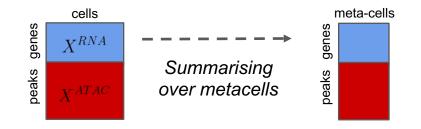
 Impute expression for scATAC cells as average of K-nearest neighbors





- Impute expression for scATAC cells as average of K-nearest neighbors
- Optimal matching of RNA and ATAC cells
 - Seurat anchors
 - Minimum-Cost Maximum-Flow bipartite graph matching (Stark et al. 2020 -<u>https://github.com/ratschlab/scim</u>)
 - OptMatch (Kartha et al. 2021 -<u>https://github.com/buenrostrolab/stimATA</u> <u>C_analyses_code</u>)





- Subsample (to representative or *optimally matched* cells)
- (Over)clustering
- Aggregate over KNN graph neighbourhoods
 - MetaCell (Baran et al. 2018 <u>https://github.com/tanaylab/metacell</u>)
 - Milo (Dann et al. 2020 -<u>https://github.com/MarioniLab/miloR</u>)

Common multi-omic analysis goals

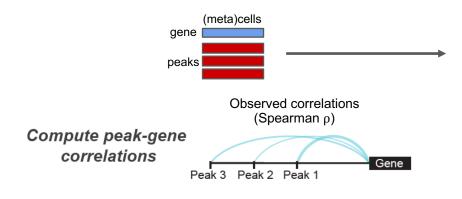
A. Verifying consensus across modalities

A. Co-embedding in meaningful latent space

A. Reconstructing missing/noisy data

A. Identifying statistical relationships between features

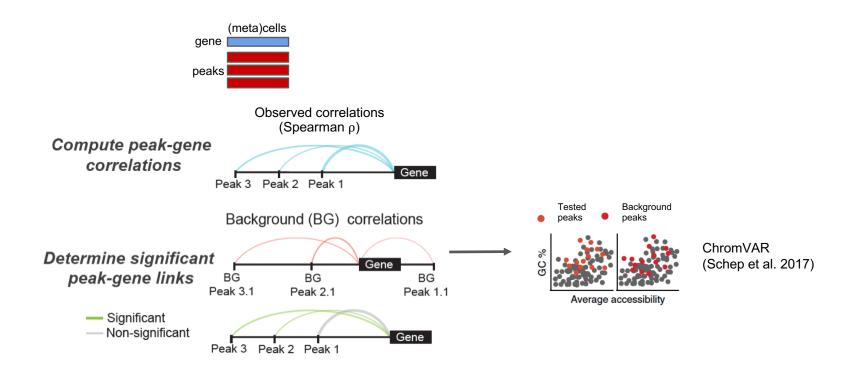
Finding statistical relationships between features



Feature selection

- Which genes? E.g. HVGs, marker genes, dynamic genes in pseudotime, ...
- Which accessibility features? Should I aggregate peaks e.g. by TF motifs or genomic locus?
- Which feature pairs?

Finding statistical relationships between features



Ma et al. 2020, Kartha et al. 2021

Downstream interpretation of peak-gene links

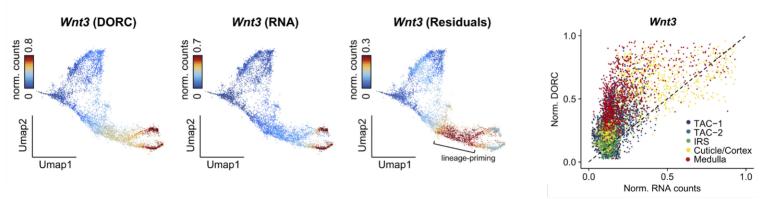
- Validation: Which peaks do we expect to be enriched in links? → Transcription Start Sites, enrichment in motifs for variable TFs
- Which genes show most regulatory elements linked?
- Pruning GRN inference links (e.g. SCENIC, CellOracle)
- Interpretation of GWAS hits

Working with multi-modal data

- Muon python extension of AnnData C PMBio/muon
- MultiAssayExperiment R/Bioconductor extension of SummarizedExperiment waldronlab/MultiAssayExperiment
- Seurat v4/Signac R https://satijalab.org/seurat
- ArchR R specific to scATAC data https://www.archrproject.com/

Collection of resources as they come out: Collection of resources as they come out:

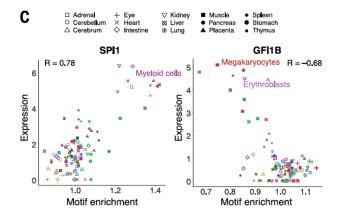
Limitations: assuming molecular changes are simultaneous



DORC = Domain of Open Regulatory Chromatin

Ma et al. (2020), Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin, Cell

Limitations: focus on positive regulation



Domke et al. (2020) A human cell atlas of fetal chromatin accessibility

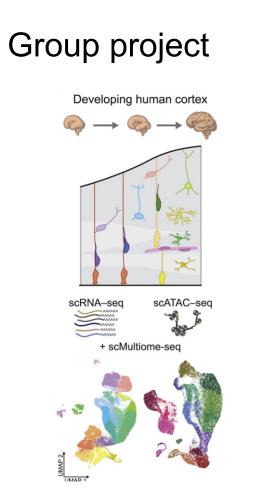
Repressor factors: expression of a gene closes chromatin

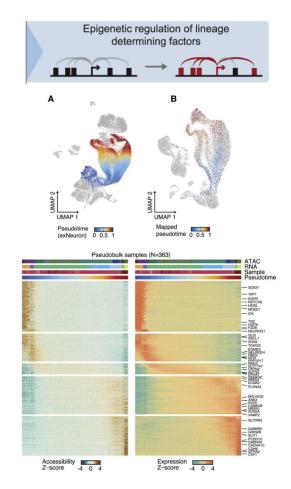
Silencer elements: accessibility of the locus silences a gene (allowing repressor TFs to bind?)

Take home messages

• There is no state-of-the-art in multi-omics analysis: new technology keeps coming and shifts the priority of data analysis

• "Integration" is not the end, it's the beginning: cases that break the assumptions for co-embedding are possibly the most interesting





Group 1: diagonal integration of unmatched scRNA-seq and scATAC-seq dataset

Group 2: vertical integration of matched scMultiomie dataset

Trevino et al. (2021) Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution

Questions?