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Overview

• Introduction	to	Deep	Learning*

• High	Level	APIs	for	Deep	Learning

• Representation	Codes

• DGNs
VAEs
GANs

• Applications	 in	scingle	cell-omics	and	existing	tools
(non-comprehensive)

• Group project overview

• Perspectives

*Parts	of	the	introduction	to	DL	inspired	by	J.J.	Allaire's	keynote	at	rstudio::conf	2018
and	Franchoit Chollet’s “Deep	Learning	with	R”	



What	is	Deep	Learning

Deep	Learning	Models	take	an	input	and	transform	it	to	an	output	vis	
successive	layers	of	increasingly	abstract	and	meaningful	representations

Raw	data Extraneous	information
filtered,	useful	information	extracted Image	from	F.	Chollet’s	“Deep	Learning	with	R”

!!!	What	is	a	“meaningful	representation”	is	a	relative	concept	that	depends	on	the	task	at	hand

Why	Deep?	->	Multi	Layered	Representation



The	mechanics	of	model	training	

The	loss	function	measures	the	success	of	the	model	for	the	task	
at	hand.

The	parameters	(weights)	of	the	model		are	updated	towards	a	
direction	that	provides	an	improvement

Updates	are	done	using	the	backpropagation algorithm	and	the	
chain	rule	that	traverses	the	model	from	the	output	towards	the	
input

The	direction	towards	which	the	parameters	need	to	move	is	
computed	using	Stochastic	Gradient	Descent	variants

This	loop	is	repeated	many	times	using	small	splits	of	the	data	
(batches)(epochs)	until	convergence

optimizer



Successes	of	Deep	Learning

• Refined	web-searching
• Spam/Fraud	detection
• Near-human	image	classification	(MSRA,	ImageNET)
• Near-human	machine	translation	(DeepL)
• Superhuman	chess/GO	playing	(AlphaZero,	LC0)
• Autonomous	driving
• Natural	language	processing	(e.g	IBM	debater,	GPT-x)

• Protein	Folding
• Medical	Image	Processing
• Drug	design
• Diagnostics

Mainly	advances	on	three	fronts:

• Massively	parallel	computation	hardware	(GPUs,	TPUs)

• Improved	algorithms	
robust	backprop,	optimizers,	regularization	techiniques

• High-quality	(often	labeled)	datasets
web	usage,	advances	in	tech/instrumentation	in	hard	sciences

Improved	architectures

User-friendly	platforms

What	spurred	the	revolution?



High	level	APIs	for	Deep	Learning:	
Keras,	TensorFlow	and	beyond.

Keras	as	a	high	level	API	supports	multiple	DL	backends: Multiple	Deep	Learning	frameworks:



• TF	is	am	open	source	general	purpose	numerical	computing	library	(not	only	DL,	e.g	
general	optimization	libraries).

• Originally	developed	by	engineers	in	the	Google	Brain	Team	for	conducting	ML	
research

• Hardware	independent	(CPUs,	GPUs,	TPUs)

• Supports	large	datasets/distributed	execution

What	is	Tensorflow



The	model	building	blocks	in	Tensorflow/Keras

• Tensors are	multidimensional	arrays.
Data Tensor dimension R object

Cell label 1D (samples) vector

Gene Count Matrix 2D (samples, genes) matrix

Longitudinal data 3D (samples, genes, timestamp) 3d array

Microscopy Images 4D (samples, height, width, channels) 4d array

Video 5D (sample, height, width, channel, frame) 5d array

*Notice	the	orientation	convention	is	opposite	to	what	bioinformaticians	/	R	users	are	used	to

• Layers are	units	of	numerical	computations	(transformation	functions)	applied	
on	tensors	and	parameterized	by	weights.

e.g	addition,	matrix	multiplication,	sampling,	taking	gradients…

• Layers	and	Tensors	are	combined	to	contruct	computation	graphs (DAGs).	
Nodes	are	layers	(computations),	edges	are	Tensors.	
Tensors	“flow”	through	the	computation	graph	and	do	smth	useful	(?).
A	fully	specified	graph	from	input	to	output	is	a	Model.

TensorFlow	graph	CC
by Tensorflow.org

https://www.tensorflow.org/guide/graphs


Keras

• Keras is	a	high	level	API	that	provides	convenient	wrappers		for	commonly	
used	layers	or	computation	graphs

sotfmax activationrelu activation

Input Hidden Layer Output

MLP	model	for	digit	classification



• Unsupervised	(easy	access	to	large	training	sets)

• Objective	is	to	obtain	an	output	that	matches	the	input.

• Data	are	“squeezed”	through	successive	layers	of	

decreasing	dimensions

• The	middle	hidden	layer	is	a	code (latent	code)	that	

represents the	input:

Autoencoders:	architecture	and	latent	codes	

Multiple	AE	flavors
Deep/Stacked,	Sparse,	Variational,	Denoising,	
Adversarial,	Disentangled…



2.	Denoising &	completion	(imputation)

3.	Feature	manipulation	,	interpolation	and	exploration

Applications	of	AEs

Why	AEs	for	SC	transcriptomics?
Tx data:						High	dimensional						Noisy/corrupt	➞
➞ Visualization							 Denoising

1.	Dimensionality	reduction	&	visualization

Subject	+	GlassesSubject

Digit	Denoising

Face	completion

Multiple	AE	flavors
Deep/Stacked,	Sparse,	Variational,	Denoising,	
Adversarial,	Disentangling…



The	common	goal	it	to	obtain	a	good	code	representation	of	the	input	data

• Smooth	/	Coherent:		similar	inputs		⟼		similar	codes.

• Generalizable			⇒	can	transfer	to	multiple	settings	/related	problems	

• Explanatory		

Latent	representations	and	“good”	representation	codes

• Robust	to	“meaningless”	input	corruptions



The	latent	representation	is	an	estimation	of	the	unerdlying	
manifold that	gives	rise	to	the	data

Waddington	landscape	(1956)

• Succinct,	generative	representations	

of	complex	Tx	manifolds.

• Each	location	in	this	manifold	

represents	a	different	realizable	cell-

state

A useful analogy:



Reconstruction Distance	to	latent	prior

• β =	1	:		ELBO	(Evidence	Lower	Bound,	standard	VAE)

• β <	1	:		Partially	regularized	VAE	(Liang	et	al.	2018)

• β >	1	:		Disentangling	Autoencoders (β –VAE,	Higgins	et	al.	2017)

- VAEs	generalize	AEs	adding	stochasticity
- Encourage	a	continuous	latent	manifold	
- Robustness	+	valid	decoding
- Allows	interpolation	and	exploration

Common	architectures	in	SC-omics	1:	Variational	Autoencoders

The	latent	prior	is	a	multivariate	normal
with	a	unit	covariance	matrix

D.	P.	Kingma and	M.	Welling.	“Auto-encoding	variational	Bayes”.	arXiv:1312.6114,	2013.



GANs have notoriously unstable training dynamics and suffer from what is known as “mode 
collapse”, which leads to some modes of the data being overrepresented and others missing.

However, they are able to generate highly realistic “fake” samples

I.	Goodfellow,	J.Pouget-Abadie,	M.Mirza,	B.Xu,	D.Warde-Farley,	S.	Ozair,	A.Courville,	and	
Y.Bengio.’	’Generative	adversarial	nets	’’.	In	Advances	in
neural	information	processing	systems,2672-2680,	2014.

Common	architectures	in	SC-omics	2:	Generative Adversarial Networks (GANs)



Data visualization clustering and exploratory	analysis

Latent Encoding

Gene Space Gene Space



Imputation and denoising

• gimVI
• DeepImpute

• ScImpute
• Deep	Count	Autoencoder	(DCA)



Batch	correction,	data	harmonization	
integration	of	heterogeneous	scRNAseq	data	

• SAUCIE
• scVI/scARCHES
• MAGAN
• CarDEC	

encoder decoder
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Multimodal	data	integration



Automatic	annotation	of	single	cell	data



DGN-based	 out-of-distribution inference	on	SC	data

DGN	based	inference	allows	inspection	of	regions	of	the	Tx	landscape	that	have	not	been	visited

Some	examples:

• Inferring	transcriptomes	upon	biological	perturbations	(e.g in	Silico	KDs)

• Inferring	effects	of	perturbations	in	different	cell/tissue	contexts	(out-of-sample	prediction)

• Inferring	trajectories



Other	applications	

• Deconvolution	of	spatial	transcriptomics	data	(Stereoscope,	DestVI)
• Analysis	of	scATACseq	data	(peakVI)
• Doublet	detection in scRNAseq data (Solo)
• Analysis	of	CITE-seq	data	(totalVI)	
• Assessing gene specific levels of zero inflation	(AutoZi)
• map	query	datasets	on	top	of	a	reference	(scArches)
• Gene	regulatory	networks	inference	(KPNNs)	
• Deconvolution	of	bulk	RNAseq	data	using	scRNAseq	atlases
• Rare	cell	detection
• In	silico	generation	of	datasets	/	data	augmentation



Group	Project

Model	construction	training,	evaluation	and	use	in	exploratory	analysis

• Construct	a	single	model	for	the	provided	dataset
• Training	and	model	evaluation
• Use latent space for visualization.	Explore	latent	variables.

Inference

• Assess	the model’s	capacity	for	denoising	(dropout	imputation,	outlier	
correction)

• Batch	correction	(due	to	use	of	the	different	technologies
• Out-of-distribution	prediction	using	latent	arithmetic

encoder decoder



Perspectives
Despite the multitude of publications on DL in sc-omics the underlying principles are and used
main architectures are relatively few.

Existing applications are not conceptual shifts but rather provide alternative implementations to
problems that already heave counterparts using different algorithimic approaches.

Geometric deep learning/structured learning: Graph convolutional networks
Allows for integration of existing biological knowledge in the network’s inductive bias.
Sparser networks, more accurate representations 

Perturbation atlases combined with the representational capacity of DGNs hold the promise of more 
comprehensive mapping out of the regulatory manifold.
Perturbation response prediction, Target and mechanism prediction, Prediction of combinatorial perturbation 
effects.

“After evaluating 6 classification methods across 14 datasets, we notably find that deep learning 
does not outperform classical machine-learning methods in the task… We, therefore, are still 
waiting for the “ImageNet moment” in single-cell genomics”


