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QUANTIFICATION, QC &
NORMALIZATION OF SCRNA-SEQ



OUTLINE

1. Quantification
2. Exploratory Data Analysis (EDA) & Quality Control (QC)
3. Normalization

4. Doublet detection



A TYPICAL ANALYSIS WORKFLOW
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A TYPICAL ANALYSIS WORKFLOW
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Resources

A step-by-step workflow for low-level analysis of single-cell
RNA-seq data with Bioconductor

= https://f1000research.com/articles/5-2122 /v2

Bioconductor workflow for single-cell RNA sequencing
= https://f1000research.com /articles/6-1158 /v1

github.com /seandavi/awesome-single-cell
scrna-tools.org
Seurat

= https://satijalab.org/seurat/

Bioconductor workshop materials

= https://bioconductor.org/help/course-materials/

Orchestrating Single Cell Analysis review

= https://www.biorxiv.org/content/10.1101/590562v1.abstract
= https://osca.bioconductor.org
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Alignment-based RNA-seq workflow
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Abundance quantification
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Abundance quantification
Gene-level counts, often obtained by

genome alignment + overlap counting

|l

POOOPOC PR COPO RN DO OO OO ONDEREIN

Charlotte Soneson



Abundance quantification
Gene-level counts, often obtained by
genome alignment + overlap counting
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Cell barcode and unique molecular identifier (UMI)

Sequencing data preserves information:

» Which cell did the sequenced transcript belong to? — cell barcode
» How many times did one transcript get sequenced? — UMI

Cell barcode UMI

MRNA molecules

=t
N
Sequencing read: [
Cell barcode UMI MRNA sequence

Katharina Imkeller (EMBL)



Whole gene vs. 3" or 5" sequencing

Depending on the library preparation and sequencing protocols that you are
using, you will get different coverage of mMRNA molecules.

A typical mRNA molecule:
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SINGLE-CELL SPECIFIC PROBLEMS FOR QUANTIFICATION

» Correctly detect barcode sequences
» Assign reads to the right barcode (cell)
» Identify empty droplets and barcode swapping

» UMI quantification, starting from read alignments (UMI
deduplication)



USEFUL TOOLS

» CellRanger (for 10X Genomics data)
» Alevin (salmon)

» Kallisto | bustools

» scPipe (Rsubread)

» Scruff (CEL-seq and CEL-seq2 data)
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UMI DEDUPLICATION

» Each RNA molecule is tagged with a UMI.

» Obviously, the reads with the same UMI should map to
the same gene.

» Naive approach is to discard reads that map to more than
one gene (ambiguous reads).

» 15-20% of input reads in 3'-end methods.

» Discarding reads can bias gene expression estimates.

Srivastava et al. (2019). Genome Biology.



KALLISTO | BUSTOOLS

» Uses pseudo-alignment and a new format called BUS
(Barcode, UMI, Set) to efficiently produce UMI count
matrices.

» It can correct barcode sequencing errors and “collisions”,
but empirically only a negligible fraction of UMIs are
affected.

» Automatically generates spliced and unspliced RNA
matrices for fast RNA velocity estimates.

Melsted et al. (2019). bioRxiv.



KALLISTO | BUSTOOLS
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THE SINGLECELLEXPERIMENT CLASS

SingleCell

Experiment

Common data structures for single-cell data
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The SingleCellExperiment class

SCe

## class: SingleCellExperiment

## dim: 3079 1000

## metadata(l): log.exprs.offset

## assays(2): counts logcounts

## rownames(3079): ENSG00000188976 ENSG00000187608 ...
##  ENSGO0000198727 ENSG0O0000220023

## rowData names(12): ENSEMBL_ID Symbol_TENx ... total_counts
##  loglO_total_counts
## colnames(1000): Celll Cell2 ... Cell999 Cell1000

## colData names(56): Sample Barcode .
H# pct_counts_in_top_200_features_mito
H# pct_counts_in_top_500_features_mito
## reducedDimNames(2): PCA zinbwave

## spikeNames(0):
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QUALITY CONTROL AND FILTERING

» Exploratory data analysis (EDA) and quality control (QC)
are of utmost importance in genomics.

» With single cell data we have the luxury of having a large
number of samples, hence we can filter out low quality
cells as well as lowly expressed genes.

» There are some simple metrics that we can compute as a
proxy of the quality of the samples.



Computing QC metrics

sce <- TENxPBMCData: :TENxPBMCData("pbmc4k")
sce <- scater::calculateQCMetrics(sce)



QC METRICS
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Cole et al. (2019). Cell Systems.
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EXPLORING DATA QUALITY
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EXPLORING DATA QUALITY
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FILTERING GENES AND SAMPLES
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EMPTY DROPLETS VS CELLS
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DropletUtils Bioconductor Package




THE EMPTYDROPS METHOD

» Estimate the expression profile of ambient RNA from the
droplets with less than T total UMI counts

» Test deviation from this profile using a Dirichlet-
multinomial model to identify non-empty (i.e., cell
containing) droplets.

» To avoid incorrectly calling ambient-like cells as empty
droplets, a "knee point” is identified by fitting a spline and
cells with total count greater than the knee point are
always retained.






NORMALIZATION

» As with bulk RNA-seq, it is important to account for

differences in sequencing depth and other biases that may
affect the expression levels.

» Usually, itis a preprocessing step prior to other analyses.

» Some methods, such as MAST, ZINB-WaVE, and BASICS,
include normalization factors as part of the models and
estimate them along with the other parameters.



NORMALIZATION
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NORMALIZATION
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NORMALIZATION
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POOLING ACROSS CELLS HELPS
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NON-LINEAR NORMALIZATION
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RANKING NORMALIZATION BY PERFORMANCE
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SCONE PERFORMANCE METRICS

1. Clustering of samples according to factors of wanted and
unwanted variation.

» Average silhouette width, with samples grouped by cell type,
batch.

2. Association of expression with factors of wanted and
unwanted variation.

» Correlation with QC measures, positive and negative controls.

3. Between-sample distributional properties of the expression
measures.

» Relative-log-expression (RLE).



RANKING NORMALIZATION USING SCONE
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BENCHMARKING USING EXPERIMENTAL MIXTURES
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BENCHMARKING USING EXPERIMENTAL MIXTURES
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DIRECTLY ACCOUNTING FOR QUALITY

» The normalization methods seen so far are global scaling
methods.

» An alternative is to account for the quality of the samples
(and batch effects) directly in the statistical model.

» Several methods do that
» MAST and BASICS for differential expression.

» ZINB-WaVE, scVI, and GLM-PCA for dimensionality
reduction.

» We will see ZINB-WaVE as an example.
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Sample quality affects PCA

PCA
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The ZINB-WaVE model

Given n samples and J genes, let Y;; denote the count of gene j
(for y =1,...,J) for sample ¢ (fori =1,...,n).

Known sample-level covanales Known gene-level covar@ates Unknown sample-level covariates
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/INB-WaVE adjusts for quality

Zinbwave
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/INB-WaVE adjusts for batch effects
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NORMALIZATION VS. BATCH CORRECTION

» Most people consider normalization and batch correction
as two separate steps.

» However, some methods (e.g., ZINB-WaVE) aim at
performing both steps simultaneously.

» For more on batch correction, see tomorrow’s lecture!

» When we expect a lot of difference in gene expression
among cell types scaling, normalization using spike-ins is
attractive. However...



BEHAVIOR OF ERCC SPIKE-INS
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Vallejos et al. (2017). Nat Methods.






DOUBLET DETECTION

» Doublets occur when a library is made by two cells.

» This can happen if two cells occupy the same microwell
(Fluidigm, plates) or if two cells are encapsulated in the
same droplet.

» Doublets are problematic for two reasons:

» Having twice as much RNA they appear as extremely
high quality samples

» They can appear as artifactual transition states between
two cell types.



DOUBLET DETECTION

» There are several computational approaches that aim at
detecting doublets.

» However, there is no consensus yet on the best approach.
» Published software include scrublet and DoubletFinder.

» They both employ a similar approach based on simulating
synthetic doublets.

» As usual, careful experimental design can help, e.g., by
mixing male and female individuals we can detect
doublets by using sex-specific genes.



DETECTABLE DOUBLETS

A Doublet formation B Effect of doublets
o Singlets
Lo U g e .
</ Q blat “ o ﬂ"
‘:‘.&. . § :rr?;o: "SRasa AR .w.'-‘-*'?"'hpeotwic
< O . " . 2
cells Enmpsulate Doublets = ® “ml il ‘ E :: .N Setud
| B Undetectatie ' ?
v o (dmplem .‘ T | Jjiia— Sowiets /‘“"s--., :
barcoded wells) S a (Embedded) Emdedoes
primer beads Embedding dim. 1

Wolock et al. (2019). Cell Systems.




SCRUBLET

Algorithm overview
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DOUBLETFINDER
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DOUBLET DETECTION IN BIOCONDUCTOR

» There are two strategies implemented in the scran
package.

» One aims at giving a score to each cell similarly to the
previous approaches.

» Another strategy is to mark clusters as being made of
doublets.

» This is more efficiently computationally, but cannot identity
doublets that look like transitional states.



FOR THE AFTERNOON LAB

library(TENxPBMCData)
scel <- TENxPBMCData(dataset
scel <- TENxPBMCData(dataset

"pbmc3k" )
"pbmc4k" )
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