

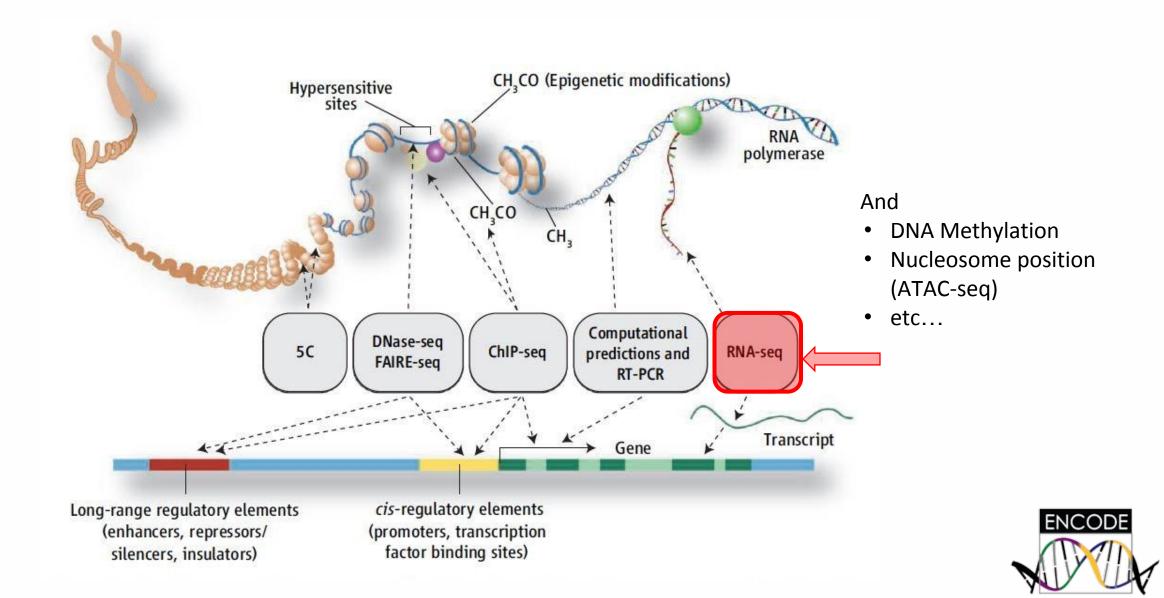
Joint SIB and NBIS/SciLifeLab Autumn School Single Cell Analysis

State of the art in the field of single-cell biology

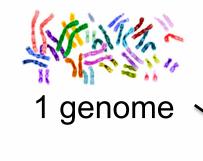
Vincent Gardeux

Deplancke's Laboratory of Systems Biology and Genetics

There are multiple genomic layers that can be measured

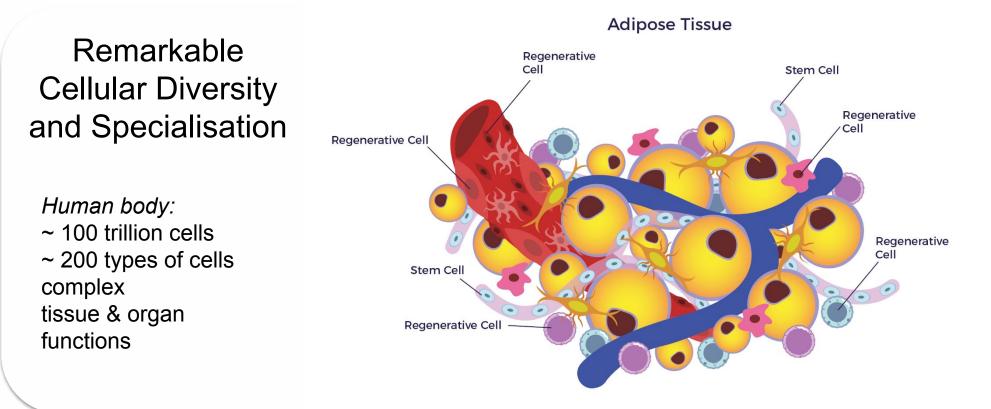


One genome: diverse functional outputs



One genome gives rise to a multitude of different cell types with highly distinct morphologies & functions

Tissues are generally heterogeneous



anatomyandphysiology.com

Bulk RNA-seq: estimate expression of transcripts in a sample

How to measure gene expression?

⇒ Bulk RNA-seq

Technique appeared in 2008

The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing

Ugrappa Nagalakshmi^{1,*}, Zhong Wang^{1,*}, Karl Waern¹, Chong Shou², Debasish Raha¹, Mark Gerstein^{2,3}, Michael Snyder^{1,2,3,†}

Abstract

The identification of untranslated regions, introns, and coding regions within an organism remains challenging. We developed a quantitative sequencing-based method called RNA-Seq for mapping transcribed regions, in which complementary DNA fragments are subjected to high-throughput sequencing and mapped to the genome. We applied RNA-Seq to generate a high-resolution transcriptome map of the yeast genome and demonstrated that most (74.5%) of the nonrepetitive sequence of the yeast genome is transcribed. We confirmed many known and predicted introns and demonstrated that others are not actively used. Alternative initiation codons and upstream open reading frames also were identified for many yeast genes. We also found unexpected 3'-end heterogeneity and the presence of many overlapping genes. These results indicate that the yeast transcriptome is more complex than previously appreciated.

Limitations of bulk RNA-seq

Bulk RNA-seq was a major breakthrough in the late 00's (replaced microarrays)

=> Great advances were made through genomics, but ...

Limitations: minimum starting material requirements techniques applied on <u>millions of cells</u>

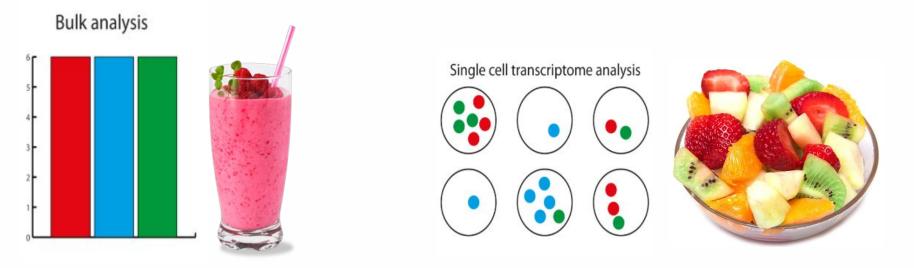
• rare cell types & states cannot be analyzed (e.g. transitions, circulating tumor cells, etc..)

• *insufficient* for studying heterogeneous systems (e.g. complex tissues such as brain)

! each sample is an AVERAGE!

no idea of the underlying values in single cells of the heterogeneity of the tissue

Single-cell RNA-seq



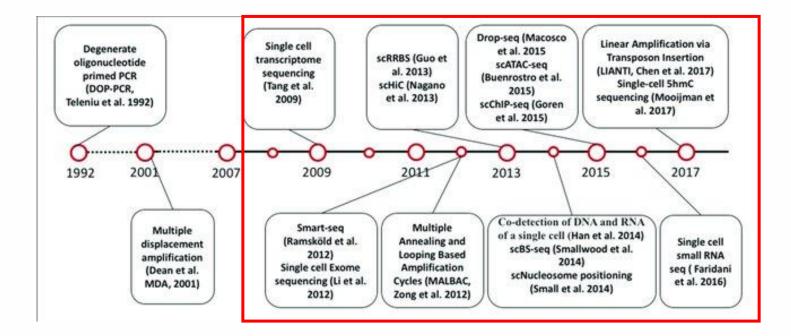
Macaulay IC. Voet T (2014) PLoS Genet

Each black circle is a cell, each colored dot is a transcript, colors encode transcript of the same gene

RARE CELL TYPES (e.g. early development, stem cells, circulating tumor cells) HETEROGENEITY (e.g. tissue composition, cancer, temporal processes) GENE REGULATORY NETWORKS (non-confounded correlations) SINGLE-CELL PHENOMENA* (gene expression stochasticity, mono-allelic expression)

* see also review <u>CoulonLarsonNatRevGenet2013</u>

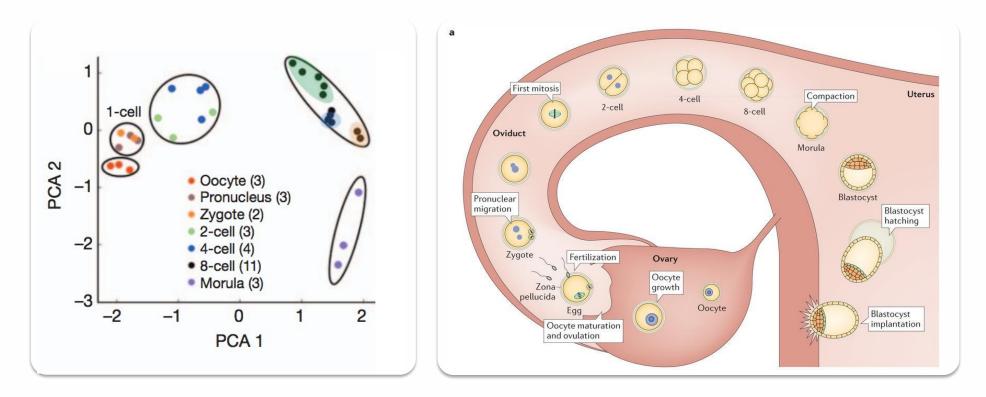
Single-cell timeline



Hu, Y., An, et al (2018). Single cell multi-omics technology: methodology and application. Frontiers in cell and developmental biology, 6, 28

Single-cell transcriptomics (scRNA-seq) applications – Development

Analyzing transcriptome of cells in human and mouse early embryos



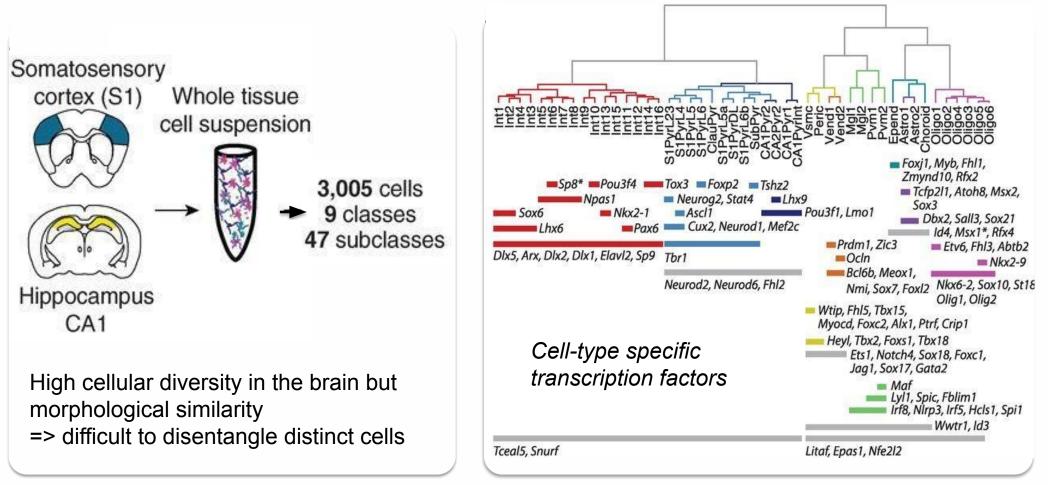
- ⇒ Each developmental stage can be delineated concisely by a small number of functional modules of co-expressed genes
- → Temporal developmental pattern different mouse-human
- → Conserved key members of human & mouse networks

Xue et al. (2013) Nature

scRNA-seq applications – Tissue heterogeneity

Mapping out cell types in the mouse cortex & hippocampus

Neuronal cell types hierarchy



Interneurons of similar type exist in dissimilar regions of the brain Identification of oligodendrocytes subtypes Microglia associated with blood vessels distinguished from perivascular macrophages

Zeisel et al. (2015) Science

Joint SIB and NBIS/SciLifeLab Autumn School Single Cell Analysis – State of the art in the field of single-cell biology

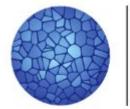
scRNA-seq applications – Creating XXX cell atlases

FLY CELL ATLAS

About

>> More

The Fly Cell Atlas will bring together Drosophila researchers interested in singlecell genomics, transcriptomics, and epigenomics, to build comprehensive cell atlases during different developmental stages and disease models.



THE PREPRINT SERVER FOR BIOLOGY

A molecular cell atlas of the human lung from single cell RNA sequencing

¹⁰ Kyle J.Travaglini, ¹⁰ Ahmad N. Nabhan, Lolita Penland, ¹⁰ Rahul Sinha, Astrid Gillich, Rene V. Sit, Stephen Chang, Stephanie D. Conley, Yasuo Mori, Jun Seita, Gerald J. Berry, Joseph B. Shrager, Ross J. Metzger, Christin S. Kuo, Norma Neff, Irving L.Weissman, Stephen R. Quake, Mark A. Krasnow

nature neuroscience

Resource | Published: 06 May 2019

A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment

Hannah Van Hove, Liesbet Martens, Isabelle Scheyltjens, Karen De Vlaminck, Ana Rita Pombo Antunes, Sofie De Prijck, Niels Vandamme, Sebastiaan De Schepper, Gert Van Isterdael, Charlotte L. Scott, Jeroen Aerts, Geert Berx, Guy E. Boeckxstaens, Roosmarijn E. Vandenbroucke, Lars Vereecke, Diederik Moechars, Martin Guilliams, Jo A. Van Ginderachter, Yvan Saeys & Kiavash Movahedi

nature International journal of science

Article Published: 10 July 2019

A human liver cell atlas reveals heterogeneity and epithelial progenitors

Nadim Aizarani, Antonio Saviano, Sagar, Laurent Mailly, Sarah Durand, Josip S. Herman, Patrick Pessaux, Thomas F. Baumert [™] & Dominic Grün [™]

Science

RESEARCH ARTICLE

The Malaria Cell Atlas: Single parasite transcriptomes across the complete *Plasmodium* life cycle

Virginia M. Howick^{1,*}, Andrew J. C. Russell^{1,*}, Tallulah Andrews¹, Haynes Heaton¹, Adam J. Reid¹, Kedar Natarajan², Hellen... + See all authors and affiliations

Science 23 Aug 2019: Vol. 365, Issue 6455, eaaw2619 DOI: 10.1126/science.aaw2619

Resource

A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer

Johanna Wagner,^{1,2,14} Maria Anna Rapsomaniki,³ Stéphane Chevrier,^{1,14} Tobias Anzeneder,⁴ Claus Langwieder,⁵ August Dykgers,⁵ Martin Rees,⁵ Annette Ramaswamy,⁶ Simone Muenst,⁷ Savas Deniz Soysal,^{8,9} Andrea Jacobs,^{1,14} Jonas Windhager,^{1,10,14} Karina Silina,¹¹ Maries van den Broek,¹¹ Konstantin Johannes Dedes,¹² Maria Rodríguez Martínez,^{3,15} Walter Paul Weber,^{9,13,15} and Bernd Bodenmiller^{1,14,16,*}

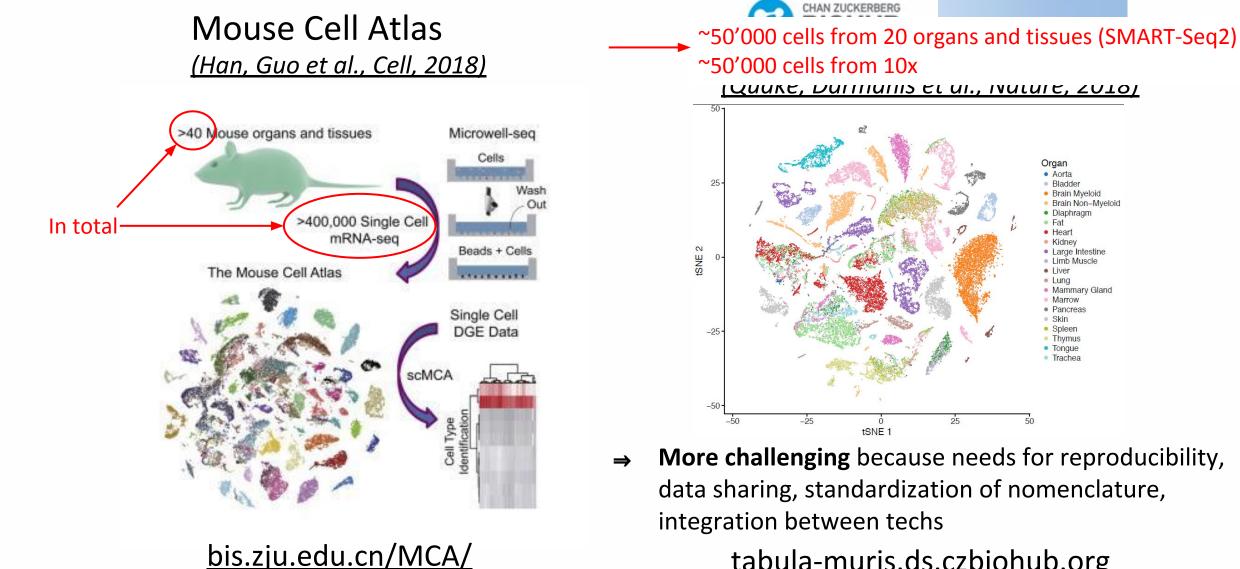
Cell Atlas of Worm

A Cell Atlas of Worm The C. elegans transcriptome at single cell resolution

In Cao et al. (Science, 2017) we reported single cell RNA-seq of *C. elegans* larvae at ~50x 'shotgun cellular coverage' using a combinatorial indexing approach (sci-RNA-seq).

Cell

Amongst first atlases: Mus musculus



tabula-muris.ds.czbiohub.org

The Human Cell Atlas

THE HUMAN CELL ATLAS

MISSION

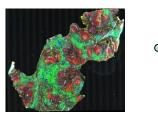
To create comprehensive reference maps of all human cells—the fundamental units of life—as a basis for both understanding human health and diagnosing, monitoring, and treating disease.

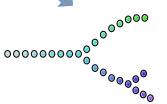
HCA plans to sequence ~1-10 billion cells? ©Dana Pe'er talk at last HCA meeting

Scope, Scale, Quality and Compatibility

Chan Zuckerberg Biohub (\$600 M Initiative)

data.humancellatlas.org





Cell States and Types Spatial location and architecture

Lineages and transitions

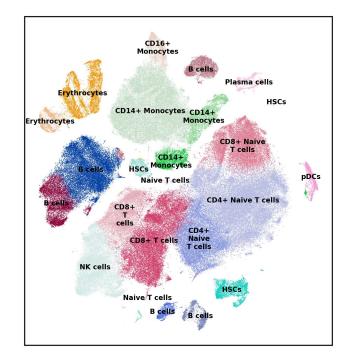
https://www.humancellatlas.org

Joint SIB and NBIS/SciLifeLab Autumn School Single Cell Analysis – State of the art in the field of single-cell biology

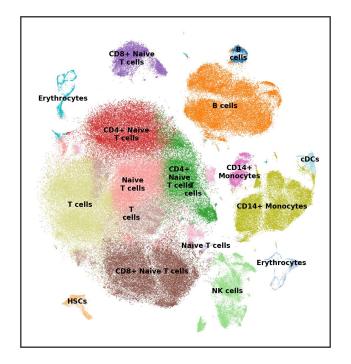
The Human Cell Atlas PREVIEW: 2 pilot studies

The Immune Cell Atlas 1.0

Bone Marrow



378,000 cells ~500Mb sparse count matrix **Cord Blood**

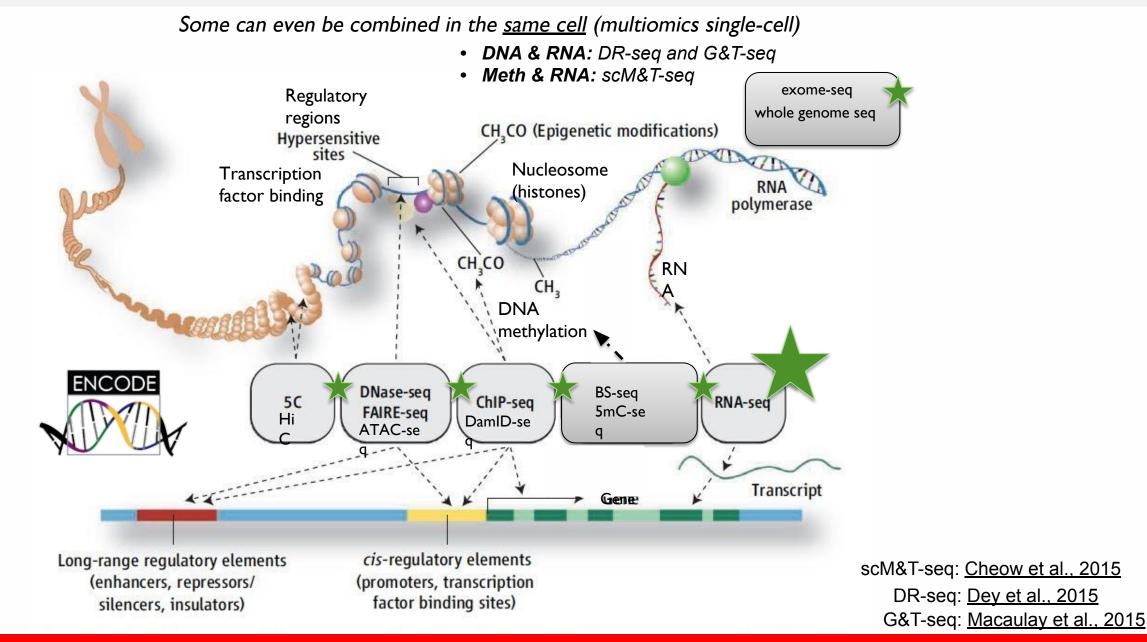


384,000 cells ~430Mb sparse count matrix

Online since April 2018 (1.3Tb w/ .fastq)

preview.data.humancellatlas.org

Single-cell genomics can now assess most genomic layers

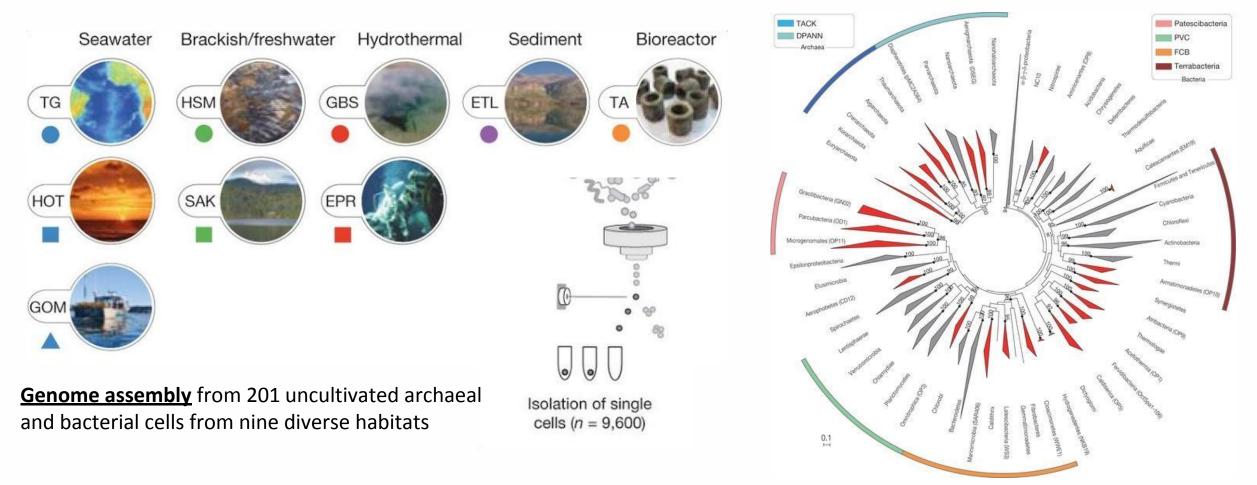


Joint SIB and NBIS/SciLifeLab Autumn School Single Cell Analysis – State of the art in the field of single-cell biology

14 / 40

Single-cell genetics – Application to microbiology

Mapping out the "microbial dark matter": species that cannot be cultivated



29 major mostly uncharted branches of the tree of life, so-called 'microbial dark matter' resolved many intra- and inter-phylum-level relationships novel, unexpected metabolic features (UGA stop codon recoded for Gly, purine synthesis, etc.)

<u>Rinke, C. et al., Nature, (2013)</u>

Single-cell ATAC – and yet another Atlas?

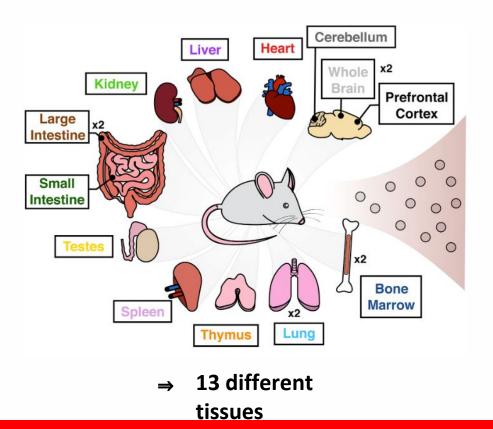
Resource

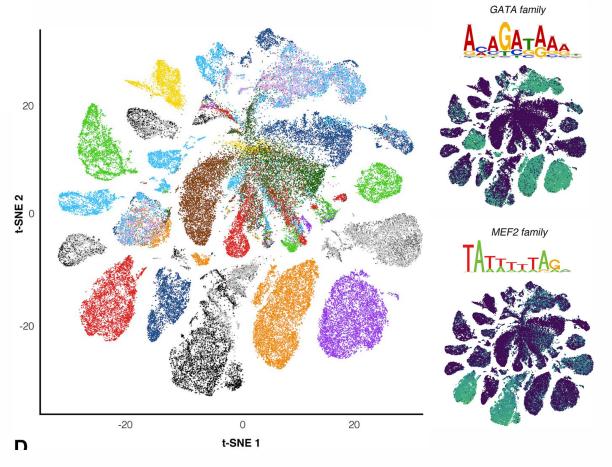
A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility

Authors

Cell

Darren A. Cusanovich, Andrew J. Hill, Christine M. Disteche, Cole Trapnell, Jay Shendure, ...,





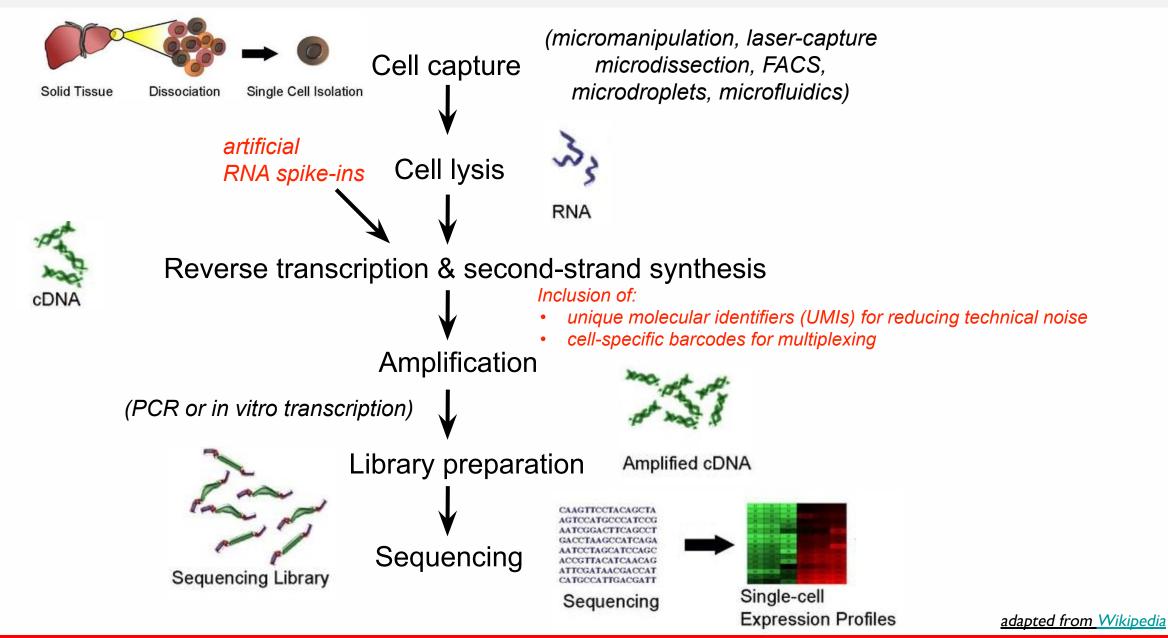
⇒ 85 distincts chromatin patterns

Cusanovich, D.A. et al., Cell, (2018)

Joint SIB and NBIS/SciLifeLab Autumn School Single Cell Analysis – State of the art in the field of single-cell biology

16 / 40

Single-cell RNA-seq experimental workflow



Joint SIB and NBIS/SciLifeLab Autumn School Single Cell Analysis – State of the art in the field of single-cell biology

Single-cell biology challenges

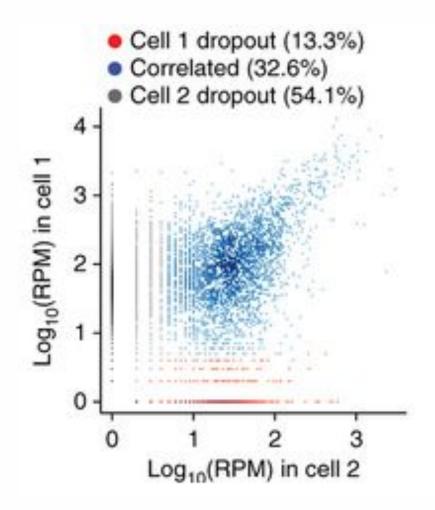
* Cell Capture: throughput, automation, cell stress

* Small quantities: obtain enough material for an accurate readout without introducing biases
 ⇒ Amplification requires many more cycles than bulk methods

* Data analysis & interpretation: sparseness, noise, high dimensionality, batch effect, doublets, ...

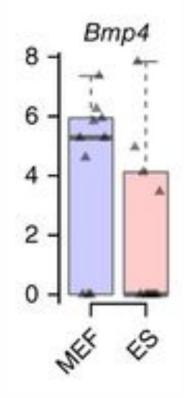
⇒ Gene 'dropouts' in which a gene is observed at a moderate expression level in one cell but is not detected in another cell

Dropout effect



2 cells of same type: mouse embryonic fibroblast (MEF)

BMP4 is part of the top DE genes between 10 mouse embryonic fibroblast (MEF) vs 10 mouse embryonic stem cells (ES)



Kharchenko et al., Nature (2014)

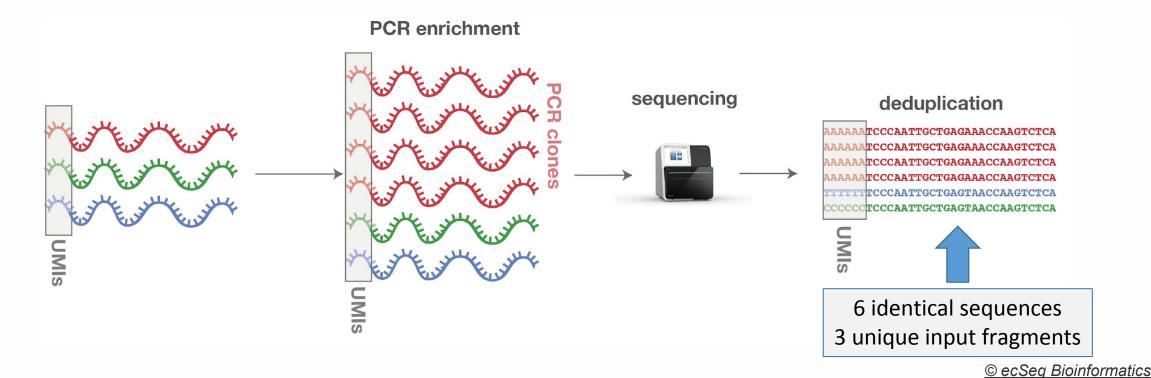
Joint SIB and NBIS/SciLifeLab Autumn School Single Cell Analysis – State of the art in the field of single-cell biology

Unique Molecular Identifier (UMI) for dealing with amplification bias

UMIs are random barcodes that are attached to the fragments prior amplification

Individual transcripts can thus be detected in the final output by removing the duplicated barcodes/UMIs

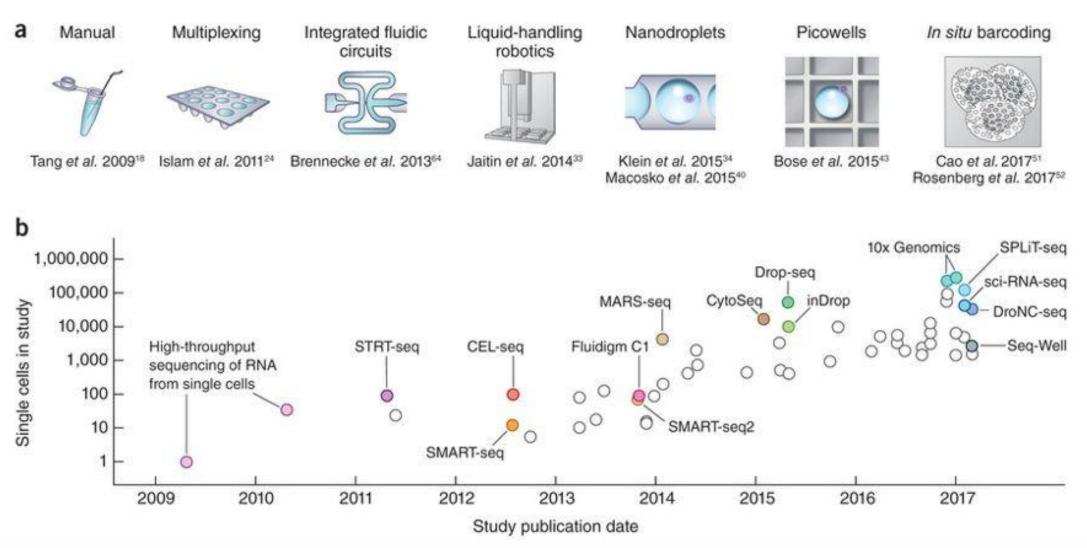
- \rightarrow Reduce the technical noise
- \rightarrow Simpler statistical models (vs read counts)
- ⇒ Better approximation of duplicates as compared to standard Picard/Samtools tools (e.g. for variant calling)



Joint SIB and NBIS/SciLifeLab Autumn School Single Cell Analysis – State of the art in the field of single-cell biology

Single-cell genomics, available protocols

scRNA-seq method development paving the way for other genomics



Svensson ... Teichman, Nature protocols, 2018

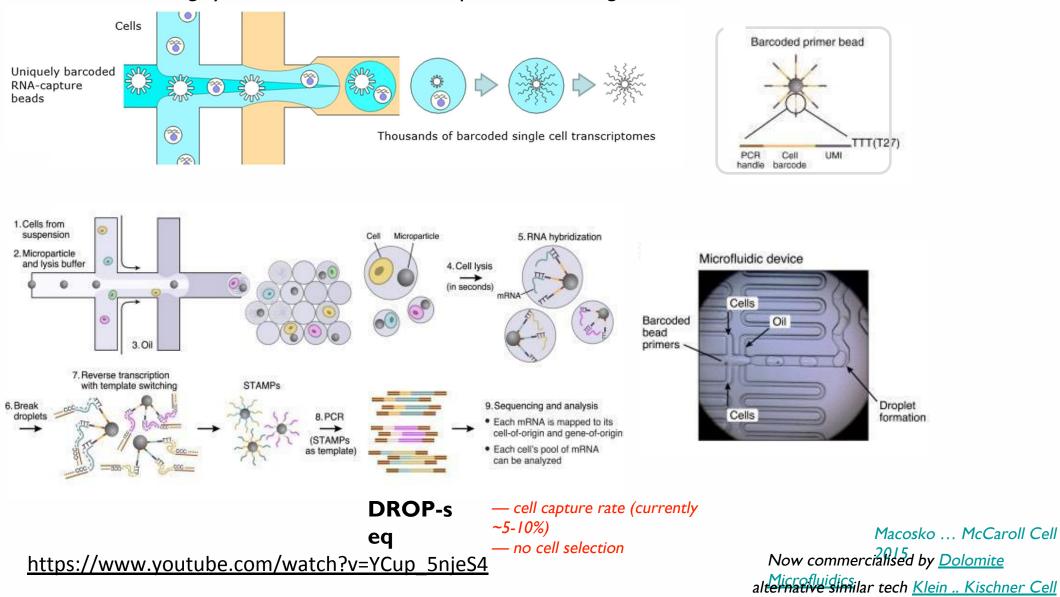
Microfluidics

- making biology more quantitative: development of MICROFLUIDICS* techniques with applications in structural biology, drug discovery, molecular affinity, diagnostics *reviewed in <u>SackmanBeebeNature2014</u>

First commercially available, fully automated scRNA-seq workflow Cells are captured using integrated fluidic circuits (up to 800 cells/experiment) <u>https://www.youtube.com/watch?v=TF4NJRE4Xg4</u>

Droplet-based microfluidics

Highly Parallel Genome-wide Expression Profiling of Individual cells

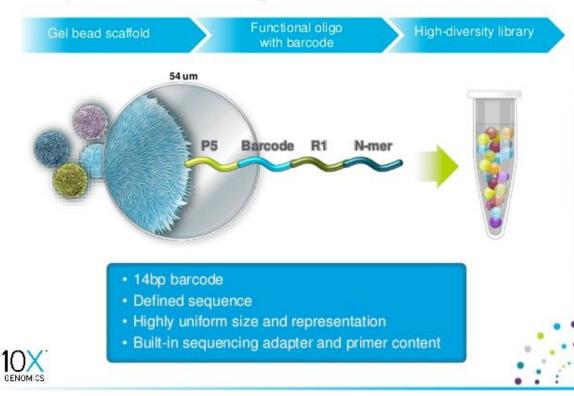


Joint SIB and NBIS/SciLifeLab Autumn School Single Cell Analysis – State of the art in the field of single-cell biology

23 / 40

10X Genomics

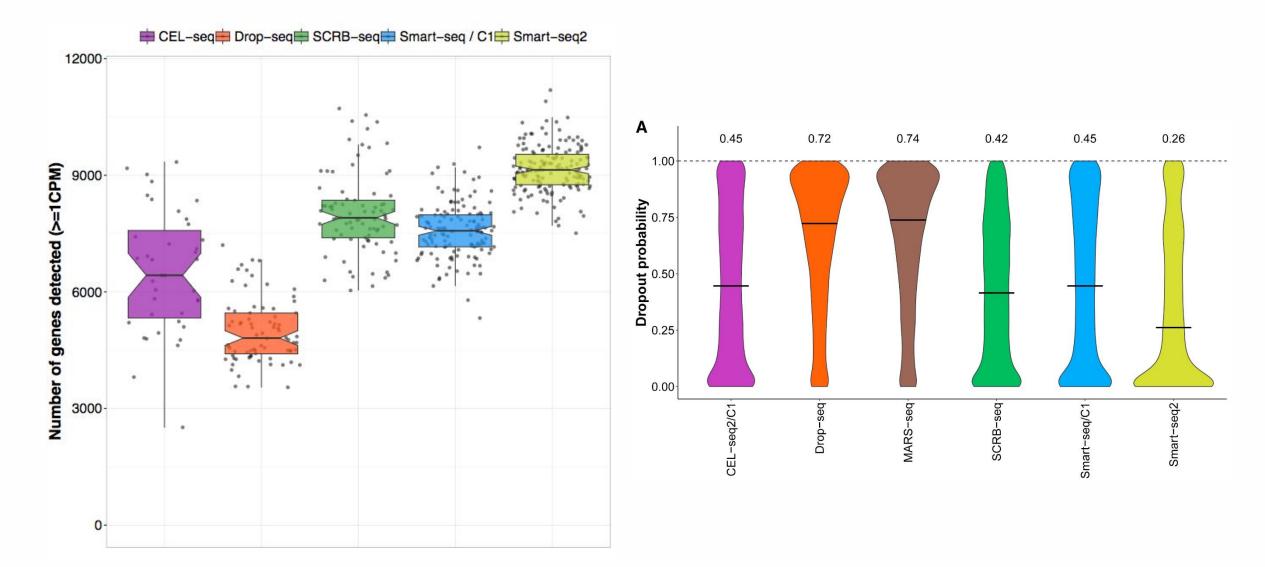
750,000 Discrete Reagents in One Tube



10X Genomics (Commercial Solution)

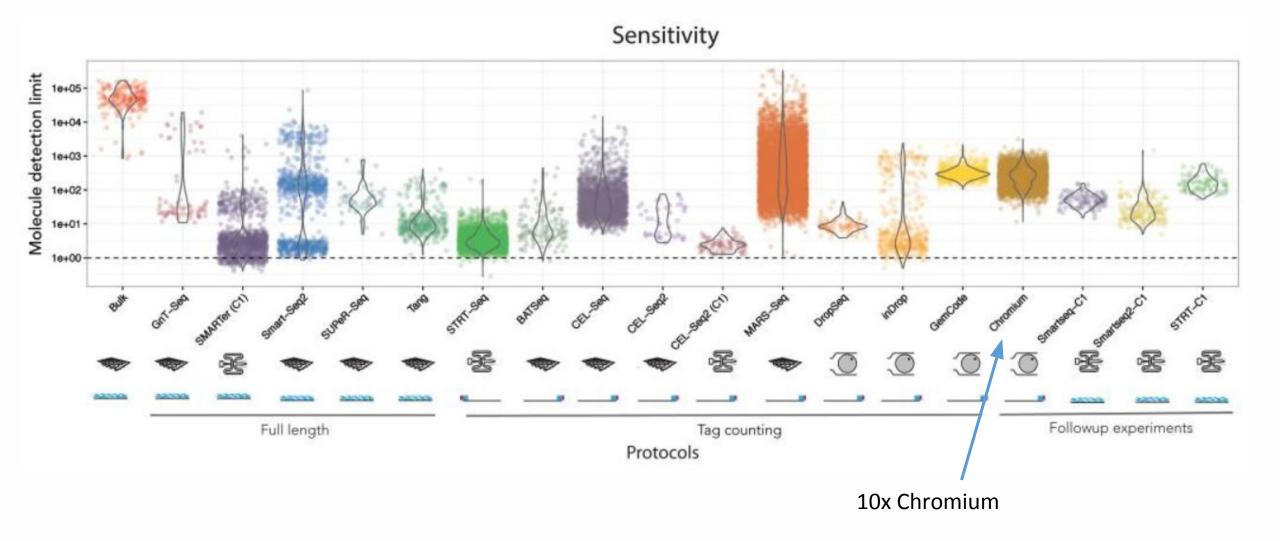
- Hydrogel bead dissolves in droplet
 uniform distribution of oligo's
- RT in drop
- Overall, higher data quality compared to DROP-seq

Which protocol to use?



Ziegenhain et al., Molecular Cell (2017)

Which protocol to use?



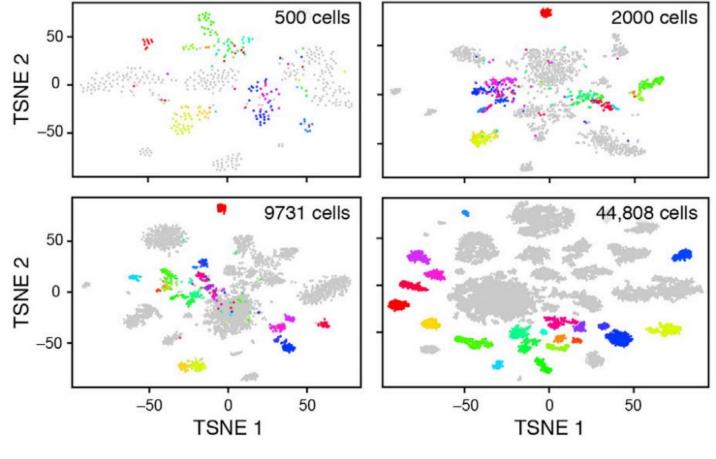
Svensson et al., Nature Methods (2017)

Which protocol to use?

 \Rightarrow Currently, the decision is a trade-off between accuracy and number of cells

⇒ Smart-seq2 (Smart-seq3) is the most sensitive / 10x is more accessible & can process more cells

e.g. DROP-seq maps out retinal cell types



⇒ The more cells you study, the better you are able to find and characterize sub populations (rare cell types, here amacrine cells)

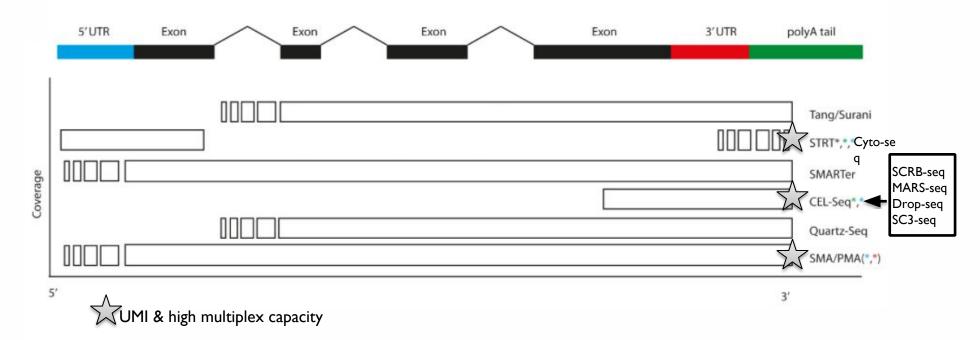
Joint SIB and NBIS/SciLifeLab Autumn School Single Cell Analysis – State of the art in the field of single-cell biology

Macosko ... McCarroll Cell

27 / 40

Single-cell RNA-seq coverage over gene body

Different methods cover distinct parts of the transcript



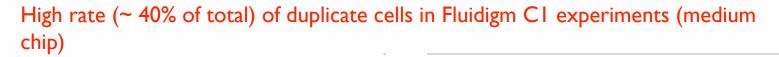
Full-length techniques enable study of alternative splicing and allele-specific expression 3' or 5' techniques enable multiplexing of a large number of cells => easy handling, low cost UMI incorporation allows reduction of PCR-introduced biases in amplification

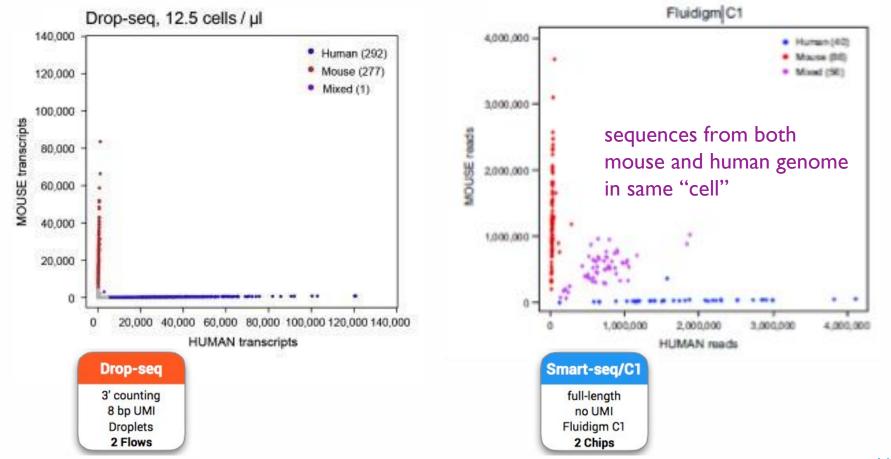
In contrast to population RNA-seq, scRNA-seq much more samples + amplification biases => early multiplexing & molecular counting very important

adapted from Macaulay .. Voet PLoS Genetics 2014

Single-cell RNA-seq – really single-cell?

Cell doublets can be assessed by species-mixing experiments



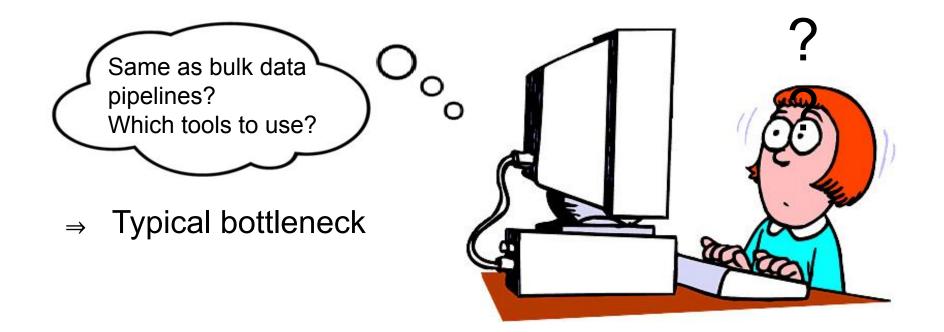


Macosko ... McCarroll Cell

Joint SIB and NBIS/SciLifeLab Autumn School Single Cell Analysis – State of the art in the field of single-cell biology

Community needs: « I want to do single-cell ! »

Community needs: « But how do I analyze single-cell data? »



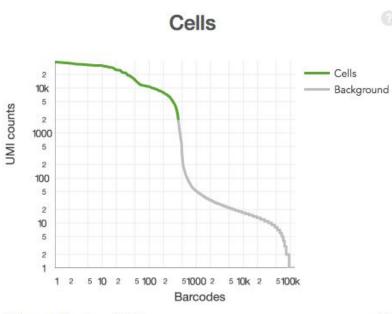
Estimated Number of Cells 416

Median Genes per Cell

3,395

Mean Reads per Cell 2,757,470

Sequencing	
Number of Reads	1,147,107,630
Valid Barcodes	98.4%
Reads Mapped Confidently to Transcriptome	57.3%
Reads Mapped Confidently to Exonic Regions	60.6%
Reads Mapped Confidently to Intronic Regions	17.2%
Reads Mapped Confidently to Intergenic Regions	5.6%
Sequencing Saturation	99.2%
Q30 Bases in Barcode	98.3%
Q30 Bases in RNA Read	76.1%
Q30 Bases in Sample Index	96.6%
Q30 Bases in UMI	98.2%



Estimated Number of Cells	416
Fraction Reads in Cells	87.1%
Mean Reads per Cell	2,757,470
Median Genes per Cell	3,395
Total Genes Detected	17,479
Median UMI Counts per Cell	7,735

specific: demultiplexing unting of cell

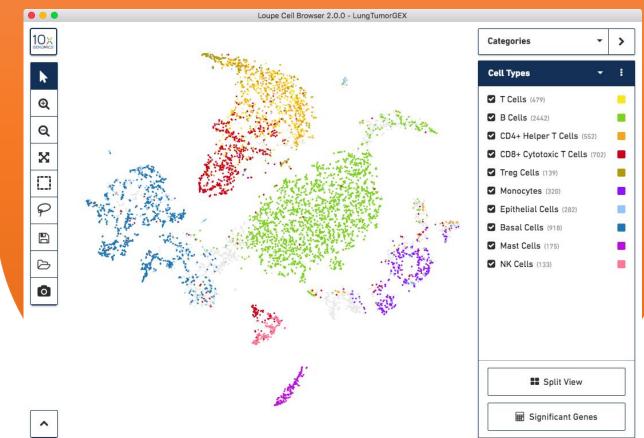
I specific: out handling cle removal

-0

Sample	
Name	NPY2
Description	
Transcriptome	mm10
Chemistry	Single Cell 3' v2
Cell Ranger Version	1.2.1

scRNA-seq analysis pipeline

"Black box" fixed pipeline?e.g. 10x cell Ranger pipeline+ Loupe Visualization



scRNA-seq pipeline may not be applicable to all datasets

"The tools aren't perfect for every situation"

⇒ "A pipeline that excels at identifying cell types, for instance, might stumble with pseudo-time analysis"

"Appropriate methods are 'very data-set dependent", says Sandrine Dudoit, (biostatistician at the University of California, Berkeley).

⇒ "The methods and tuning parameters may need to be adjusted to account for variables such as sequencing length"

scRNA-seq pipeline may not be applicable to all datasets

Solutions

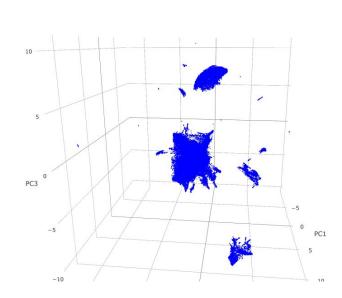
- Standardized but parametrizable pipelines (e.g. Seurat)
- ⇒ Probably best for bioinformaticians

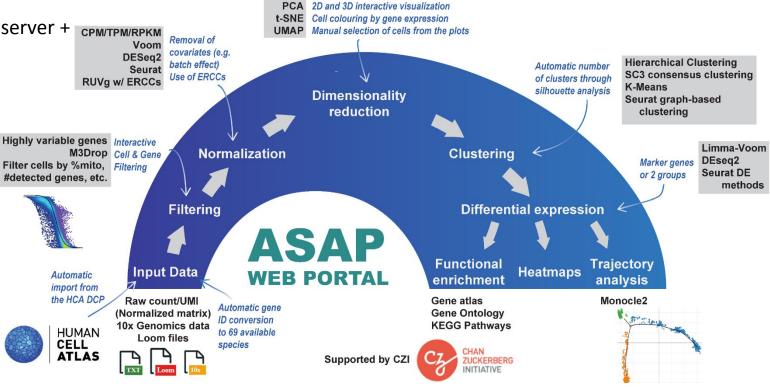
User-friendly automated analysis portals (e.g. ASAP, Scope, FastGenomics, ...)
 => Good first glance at results for bioinformaticians. Sufficient for non-bioinformaticians.

Web portal for the interactive analysis of single-cell RNA-seq data

Web-tool for the interactive analysis of single-cell RNA-seq data

- ⇒ Provide HCA with a common interface for reproducible and interactive analysis of data
- → Centralized computational resources: Ruby-on-rails server + R/Python/Java code
- → Job queuing management: delayed-jobs gem
- \rightarrow Currently 1430 projects & 400 registered users





asap-beta.epfl.ch

Gardeux et al., Bioinformatics, (2017

Joint SIB and NBIS/SciLifeLab Autumn School Single Cell Analysis – State of the art in the field of single-cell biology

36 / 40

NEW

Uniformization: how to handle/store a single-cell experiment...

Many different file formats exist to store all the information of single-cell RNA-seq project:

- CSV / TSV text file (dense Matrix)
- MTX text file (sparse Matrix)
- SingleCellExperiment R object (sparse Matrix)
- Seurat R object (sparse Matrix)

• Loom file (dense Matrix)

٠

. . .

Loom Files?

5,795 KB

Loom 2.0 loompy.org GitHub Contents 🕶

Grun-RawMatrix.loom

Loompy documentation HT HDFView 3.0 File Window Tools Help Loom is an efficient file format for very large omics datasets, consisting of a main matrix, optional additional layers, a variable number of 🧶 🚺 5 🖻 🗖 row and column annotations, and sparse graph objects. We use loom files to store single-cell gene expression data: the main matrix contains the actual expression values (one column per cell, one row per gene); row and column annotations contain metadata for genes Recent Files C:\Users\gardeux\Dropbox\SingleCellData\Grun-RawMatrix.loom and cells, such as Name , Chromosome , Position (for genes), and strain , Sex , Age (for cells). Graph objects are used to store nearestneighbor graphs used for graph-based clustering. - ち Grun-RawMatrix.loom General Object Info 🛩 📹 col_attrs The Loom logo illustrates how all the parts fit together: Name: matrix CellID Path: 1 Depth HDF5 Scalar Dataset Type: E Detected Genes Main matrix Number of Attributes: 0 Dataset ERCCs 6000 Object Ref: Mitochondrial_Content Row attributes mail: Coding_Content Dataspace and Datatype Ribosomal_Content Column attributes 2 No. of Dimension(s): Col_graphs Additional layers 23469 x 292 Dimension Size(s): 🗀 layers 🕅 matrix Max Dimension Size(s): Unlimited x Unlimited Graphs ~ 🗑 row_attrs Data Type: 32-bit floating-point Accession Gene Loom files (.loom) are created in the HDF5 file format, which supports an internal collection of numerical multidimensional datasets. HDF5 Biotypes is supported by many computer languages, including Python, R, MATLAB, Mathematica, C, C++, Java, and Ruby. Chromosomes E_Sum © Copyright 2017, LinnarssonLab. SumExonLength 🖀 _Tata C row_graphs Storage Layout: CHUNKED: 1 × 292 Compression: 12.472:1GZIP: level = 2 GZIP Filters: Storage: SIZE: 2197821, allocation time: Incremental Fill value: NONE Example:

2/27/2019 10:40 AM LOOM File

п х

Clear Tex

Current methodological challenges for single-cell analysis...

- Uniform storage / representation of a single-cell dataset
- Manifold alignment: Define novel methods for integration of multiomics/multiplatform datasets (e.g. batch effect)
- Scaling: HCA plans to generate datasets of > 10 billions cells. How to t-SNE that??
- → Cloud computing, scalable methods (scanpy, Seurat?), out-of-RAM computations
- Compression
- ⇒ Standardized data format for .fastq/BAM files (MPEG-G)
- ⇒ Lossless compression or not
- Imputation
- ⇒ Solving the dropout issue by replacing the 0s?
- Trajectory analysis
- \Rightarrow Find scalable methods

