Single Cell School

Dimensionality reduction

Swiss Institute of Bioinformatics

Paulo Czarnewski, NBIS / SciLifeLab

A general single cell analysis workflow

Reads \longrightarrow Read QC \longrightarrow Raw counts

The workflow is dataset-specific:

- Research question
- Batches
- Experimental Conditions
- Sequencing method
- ...

Why dimensionality reduction?

 NATIONAL BIOINFORMATICSNFRASTRUCTURE SWFDEN SciLifeLab

- Reduce computational time for downstream procedures
- Facilitate clustering, since some algorithms struggle with too many dimensions
- Data visualization

Some dimensionality reduction algorithms

They can be divided into 3 major groups:

PCA	linear	Matrix Factorization		
ICA	linear	Matrix Factorization		
MDS	non-linear	Matrix Factorization		
Sparce NNMF	non-linear	Matrix Factorization	2010	https://pdfs.semanticscholar.org/664d/40258f12ad28ed0b7d4 c272935ad72a150db.pdf
cPCA	non-linear	Matrix Factorization	2018	https://doi.org/10.1038/s41467-018-04608-8
ZIFA	non-linear	Matrix Factorization	2015	https://doi.org/10.1186/s13059-015-0805-z
ZINB-WaVE	non-linear	Matrix Factorization	2018	https://doi.org/10.1038/s41467-017-02554-5
Diffusion maps	non-linear	graph-based	2005	https://doi.org/10.1073/pnas. 0500334102
Isomap	non-linear	graph-based	2000	10.1126/science.290.5500.2319
t-SNE	non-linear	graph-based	2008	https://Ivdmaaten.github.io/publications/papers/JMLR_2008.pdf
- BH t-SNE	non-linear	graph-based	2014	https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf
- Flt-SNE	non-linear	graph-based	2017	arXiv:1712.09005
LargeVis	non-linear	graph-based	2018	arXiv:1602.00370
UMAP	non-linear	graph-based	2018	arXiv:1802.03426
PHATE	non-linear	graph-based	2017	https://www.biorxiv.org/content/biorxiv/early/2018/06/28/12037 8.full.pdf

scvis	non-linear	Autoencoder (MF)	2018	https://doi.org/10.1038/s41467-018-04368-5
VASC	non-linear	Autoencoder (MF)	2018	https://doi.org/10.1016/j.gpb.2018.08.003

... and many more

PCA
Principal Component Analysis

How PCA works

It is a LINEAR algebraic method of dimensionality reduction.

It is a case inside Singular Value Decomposition (SVD) method (data compression) Any matrix can be decomposed as a multiplication of other matrices (Matrix Factorization).

How PCA works

How PCA works

PC1 explains $>98 \%$ of the variance

1 PC thus represents 2 genes very well "Removing" redundancy

PC2 is nearly insignificant in this example Could be disregarded

In real life ...

Seurat Pipeline

PCA in single cell data

PC1 and PC2 are commonly correlated to sequencing depth and cell heterogeneity/complexity
(but not always ...)

Seurat Pipeline / Forkel et all 2015

PCA: Summary

To keep in mind:

- It is a LINEAR method of dimensionality reduction
- It is an interpretable dimensionality reduction
- Data is usually SCALED prior to PCA (Z-score \| see ScaleData in the Seurat)
- The TOP principal components contain higher variance from the data
- Can be used as FILTERING, by selecting only the top significant PCs
- PCs that explain at least 1% of variance
- Jackstraw of significant p-values
- The first 5-10 PCs

Problems:

- It performs poorly to separate cells in 0-inflated data types (because of it non-linearity nature)
- Cell sizes and sequencing depth are usually captured in the top principal components

A very brief intro to graphs

Graphs

This is a PLOT

This is GRAPH (a.k.a. network)

- Each dot is a cell (or a gene)
- Each line represents a connection between 2 cells
- Each connection can be weighted as a proximity between cells
- Correlation (high and positive)
- Euclidean distance (low) - etc.

Graph-based dimensionality reduction algorithms can be divided into 2 main steps:

1. Construct a weighted graph based on the top k connections (a.k.a. k-nearest neighbors, KNN)
2. The low dimensional layout of the graph is computed and optimized
tSNE
t-Stochastic Neighborhood Embedding

How t-SNE works

It is a graph-based NON-LINEAR dimensionality reduction

In other words, t-SNE calculates the distances based on the distance to the neighbor cell
$\mathcal{\mathcal { V }}$ Src: http://web-ext.u-aizu.ac.jp/~shigeo/home.html
Maaten et al (2008) Journal of Machine Learning Research

How t-SNE works

Low
dimension

$\mathrm{p}_{\mathrm{jli}}$ and $\mathrm{q}_{\mathrm{jli}}$ measure the conditional probability that a point i would pick point j as it's nearest neighbor, in high (p) and low (q) dimensional space respectively.

How t-SNE works

gene A

Higher KL divergence (cost / error)

iterations

\mathcal{V} iterations

Lower KL divergence (cost / error)

The same concept applies to embedding into 2 dimensions

t-SNE hyper-parameters

- Barnes-Hut's tSNE implementation - $\mathrm{O}(n \log n)$

```
Rtsne & Seurat & viSNE (MATLAB)
```

\mathcal{P} Maaten (2014) Journal of Machine Learning Research

The definition of the t-SNE and the chances of converging correctly depends on the hyper-parameters ("tuning" parameters).
t-SNE has over 10 hyper-parameters that can be optimized for your specific data.

The most common hyper-parameters are:

- Perplexity
- Number of iterations
- Learning rate
- Theta (for BH t-SNE)

Check this link: https://distill.pub/2016/misread-tsne/

Important notes about t-SNE

- Unlike PCA, it is a stochastic algorithm, so it will never produce the same output (unless you use a seed () to lock the random estimators).
- The cost function never reaches the minima, and it is not an indicator how good the graph looks.

- The cost function in t-SNE minimizes the distance between similar points (and ignore the distant ones - local embedding) The distances within a group are slightly meaningful, but not between groups!
- To add more samples, you need to re-run the algorithm from start.

Efficient t-SNE implementation

- Fast Fourier Transform-accelerated Interpolation-based t-SNE - O(n)
($\mathcal{L i n d e r m a n ~ e t ~ a l ~ (2 0 1 7) ~ B i o R x i v ~}$

t-SNE: summary

To keep in mind:

- It is a NON-LINEAR method of dimensionality reduction
- It is the current GOLD-STANDARD method in single cell data (including scRNA-seq)
- Can be run from the top PCs (e.g.: PC1 to PC10)

Problems:

- It does not learn an explicit function to map new points
- It's cost function is not convex - This means that the optimal t-SNE cannot be computed
- Too many hyper-parameters to be defined empirically (dataset-specific)
- It does not preserve a global data structure (only local)

UMAP

Uniform Manifold Approximation and Projection

How UMAP works

It is based on topological structures in multidimensional space (simplices)
Points are connected with a line (edge) if the distance between them is below a threshold:

- Any distance metric can be used (euclidean)

This way, by constructing the simplicial complexes beforehand allows UMAP to calculate the relative point distances in the lower dimension
(instead of randomly assigning as in tSNE)

How UMAP works

The distance in the manifold are the same, but not in the REAL space.

The distance is now "variable" in the REAL space for each point (t-SNE was fixed)

gene A

Since UMAP learns the global data structure and is less dependent on random initiators (like t-SNE), it can recreate low dimensional embedding regardless of the dataset size.

(a) UMAP

(b) t-SNE

\mathcal{J} McInnes et al (2018) BioRxiv
\mathcal{J} Becht \& McInnes et al (2019) Nat Biot

UMAP hyper-parameters

UMAP assumes that there is a manifold in the dataset, it could also tend to cluster noise.

As for t-SNE, checking the parameters is also important.

Embedding of random noise
\mathcal{J} McInnes et al (2018) BioRxiv

UMAP hyper-parameters

UMAP's mathematical improvements allows much faster computations compared to current state-of-the-art methods.

$\mathcal{1}$ McInnes et al (2018) BioRxiv
\mathcal{G} Becht \& McInnes et al (2019) Nat Biot

UMAP: Summary

To keep in mind:

- It is a NON-LINEAR graph-based method of dimensionality reduction
- Very efficient - $\mathrm{O}(n)$
- Can be run from the top PCs (e.g.: PC1 to PC10)
- Can use any distance metrics!
- Can integrate between different data types (text, numbers, classes)
- It is no longer completely stochastic as t-SNE
- Defines both LOCAL and GLOBAL distances
- Can be applied to new data points
(ง) McInnes et al (2018) BioRxiv
\mathcal{S} Becht \& McInnes et al (2019) Nat Biot

Wrap-up

Single cell workflows

Seurat v3 Scater Pagoda v2 Monocle v3

PCA	PCA	PCA	PCA
ICA	-	-	ICA
-	MDS	-	-
tSNE (BH, Flt)	tSNE (BH)	tSNE (BH)	tSNE (BH)
UMAP	UMAP	-	UMAP
-	-	LargeVis	-
Diff. Maps	Diff. Maps	Isomap	-
-	-	-	DDRTree
PHATE	-	-	-
-	-	-	SimplePPT

Paper comparing lots of dimensionality reduction techniques: https://www.biorxiv.org/content/biorxiv/early/2018/06/28/120378.full.pdf

Thank you!

Swiss Institute of Bioinformatics

Paulo Czarnewski, ELIXIR-Sweden (NBIS)

European Life Sciences Infrastructure for Biological Information www.elixir-europe.org

