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What do we mean by “differential expression analysis”?

Comparison of cell 
types (often within a 
single sample), to 
find “marker genes”

FOCUS OF TODAY
T-cell

B-cell



What do we mean by “differential expression analysis”?

“Differential state 
analysis” - 
comparison of gene 
expression within a 
cell type, between 
samples/conditions 
(with replicates!)

TOMORROW!
T-cell, untreated samples

B-cell, untreated samples
T-cell, treated samples

B-cell, treated samples



Differential abundance analysis

Comparison of cell 
type composition 
between samples/
conditions (with 
replicates!)

T-cell, untreated samples

B-cell, untreated samples
T-cell, treated samples

B-cell, treated samples

TOMORROW!



Comparing cell populations

Comparison of cell 
types (often within a 
single sample), to 
find “marker genes”

T-cell

B-cell



Comparing cell populations

• Step 1: Get the cell populations 

• clustering 

• cell type assignment 

• known in advance (sorted cells) 

• Step 2: Compare expression levels between populations

Some caution is warranted, if 
we are using the same data to 
define the cell populations as 
to compare them.



Differential expression analysis

Setup is similar to bulk RNA-seq (gene-vs-observation matrix of counts)

FLT3LG 0 2 0 1 4 0 0 0 4 6 4 0 1 1 0 0 0

NEAT1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0

SCYL1 2 3 2 0 0 1 1 0 0 2 1 2 0 2 0 0 2

MALAT1 49 142 171 11 22 157 90 47 55 30 24 95 75 101 31 45 6

LTBP3 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0

RPL13A 20 12 0 0 1 19 6 0 0 0 7 12 9 0 0 2 1

RCN3 0 0 0 1 0 1 1 1 0 0 0 2 0 0 0 0 0

RPS11 1 16 3 6 0 3 8 0 1 0 16 3 6 10 2 0 2



Can we use bulk methods?

Data characteristics are different - scRNA-seq data is much more sparse, with 
high variability
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Is scRNA-seq data zero-inflated?

Droplet scRNA-seq 
negative control data 
(without biological 
heterogeneity) is 
consistent with a regular 
(non-zero-inflated) 
Negative Binomial 
distribution. 

Svensson, bioRxiv doi: https://doi.org/10.1101/582064 (2019)

https://doi.org/10.1101/582064


Is scRNA-seq data zero-inflated?

Zero-inflated Negative 
Binomial provides a 
moderate improvement 
over a regular Negative 
Binomial for UMI counts, 
more improvement for 
read counts.

Vieth et al, Bioinformatics 33(21):3486-3488 (2017)

UMI counts (STRT-Seq) Read counts (SmartSeq)



Can we use bulk methods?

• We have many more cells than the typical number of bulk RNA-seq 
samples, but often only from a single individual 

• what does it mean to treat the cells as “biological replicates”? 

• to what can we expect the results to generalize?



Can we use bulk methods?

What do we want to 
compare? In bulk, almost 
always mean expression 
between different 
conditions, but could be 
other things (e.g., 
heterogeneity, proportion 
of cells that express a 
gene).

Korthauer et al, Genome Biology 17:222 (2016)



Comparing differential  
expression methods

• Bulk RNA-seq analysis methods do not 
generally perform worse than those 
developed specifically for scRNA-seq 

• Even the t-test and the Wilcoxon test 
work well (assuming that you have at 
least a few dozen cells to compare) 

• Filtering out lowly expressed genes is 
quite important for good performance of 
bulk methods

Soneson & Robinson, Nature Methods 15:255-261 (2018); http://imlspenticton.uzh.ch:3838/scrnaseq_de_evaluation/

http://imlspenticton.uzh.ch:3838/scrnaseq_de_evaluation/


edgeR (QLF)

• Model the raw (UMI/read) counts with a Negative Binomial distribution, with offset accounting 
for sequencing depth/composition effects. 

• Quasi-likelihood F-test. 

• Empirical Bayes shrinkage to get robust dispersion estimates even with limited replication. 

• Gene-wise null hypothesis: mean expression is the same across groups

Cij ⇠ NB(µij = sijqij , ✓i)

raw count for gene i in sample j
scaling factor

relative abundance

dispersion

Robinson et al, Bioinformatics 26:139-140 (2010); Lun et al, Methods in Molecular Biology 1418:391–416 (2016)



Extending bulk methods to zero-inflated data

• Idea:  

• For each observed zero count, estimate the probability that it is 
generated from the zero component (rather than the Negative 
Binomial). 

• Downweight the zeros from the zero component in the inference steps. 

• Weights can be estimated e.g. with the zinbwave package.

Van den Berge et al, Genome Biology 19:24 (2018); Risso et al, Nature Communications 9:284 (2018)



MAST

• Model log(TPM+1) values 

• Hurdle model - model the rate of expression as well as the mean 
expression (conditional on being expressed) 

• Two-part model: logistic regression + linear model

Finak et al, Genome Biology 16:278 (2015)



limma-trend

• Normalize and log-transform counts (often with a relatively large 
pseudocount of, e.g., 3) 

• Apply limma (linear model with moderated variance) 

• modify the default empirical Bayes procedure to incorporate a mean-
variance trend in the prior 

• Gene-wise null hypothesis: mean expression is the same across groups

Law et al, Genome Biology 15:R29 (2014)



t-test

• Parametric two-group comparison. 

• Gene-wise null hypothesis: mean expression in group 1 = mean expression in 
group 2. 

• Typically allow different variance in the two groups (Welch t-test). 

• Expression values should be pre-normalized and preferably approximately 
normally distributed within each group - typically applied to logcounts. 

• Default test in scran::findMarkers() 

• Also used in Seurat::FindMarkers(…, test.use = “t”)



Wilcoxon (Mann-Whitney) test

• Non-parametric two-group comparison. 

• Gene-wise null hypothesis: it’s equally likely that a randomly selected cell 
from group 1 will have higher or lower expression of the gene than a 
randomly selected cell from group 2. 

• Expression values should be pre-normalized - typically applied to 
logcounts (monotonic transformations don't change outcome). 

• Default test in Seurat::FindMarkers() 

• Also used in scran::findMarkers(…, test.type = “wilcox”)
Bioc 3.10



Compare the proportion of zeros

• Binomial test. 

• Gene-wise null hypothesis: the probability of being expressed is the same 
in group 1 and group 2. 

• Accessible via scran::findMarkers(…, test.type = “binom”)
Bioc 3.10



Comparing cell populations in the presence of batch effects

T-cell, patient 1

B-cell, patient 1
T-cell, patient 2

B-cell, patient 2

First, make sure that 
clusters are 
properly defined!



Comparing cell populations in the presence of batch effects

• Alt. 1: Remove the batch effect first, perform tests on "corrected" data 

• Typically not recommended 

• Correction may not preserve magnitude (or direction) of gene 
expression changes between cell types 

• Correction may introduce "artificial agreement” between batches - 
expression values in one batch are adjusted to better match those in 
another batch



Comparing cell populations in the presence of batch effects

• Alt. 2: Include the (additive) batch effect as a predictor in the statistical model 

• Can handle the situation where some cell types are not present in all 
batches 

• All data is used for parameter estimation - can increase power  

• For linear models, places stronger assumptions on the data than e.g. the t-
test (equal variance between groups) 

• Assumes that the batch effect is constant across cell types 

• Applicable via scran::findMarkers(…, design = design)



Comparing cell populations in the presence of batch effects

• Alt. 3: Perform separate test for each batch, then aggregate 

• Only possible if both clusters are present in at least one batch 

• Applicable via scran::findMarkers(…, block = “batch”) 

• p-values are combined using Stouffer’s Z method



Recap

• We have seen  

• how to compare two cell populations 

• using several different methods 

• both in the absence and presence of batch effects 

• How can we use this to answer biological questions of interest?



What is a “marker gene”?

• Differential expression is always comparative - the results will depend on 
what we compare to! 

• If the data set consists only of T-cells, no generic T-cell markers will (or, 
at least, should) show up as differentially expressed between clusters 

• Important to keep in mind when comparing marker genes found in 
different studies, with potentially different composition



What is a “marker gene”?

• Typically we have more than two clusters in a data set 

• For a given cluster, are we interested in “marker genes” that are: 

• DE compared to all cells outside of the cluster 

• DE compared to at least one other cluster 

• DE compared to each of the other clusters 

• DE compared to “most" of the other clusters



What is a “marker gene”?

• For a given cluster, are we interested in “marker genes” that are: 
• DE compared to all cells outside of the cluster  

                Seurat::FindMarkers(…) 
• DE compared to at least one other cluster  

                scran::findMarkers(…, pval.type = “any") 
• DE compared to each of the other clusters  

                scran::findMarkers(…, pval.type = “all") 
• DE compared to “some” of the other clusters  

                scran::findMarkers(…, pval.type = “some")
Bioc 3.10



What is a “marker gene”?

• Typically, upregulated marker genes are a bit easier to interpret 

• scran::findMarkers(…, direction = “up”) only returns these (can 
also be set to “down”)  

• Over/underclustering can have a big effect on the marker genes



DE types
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• any - DE wrt at least one other cluster 

• joint - DE wrt all cells outside cluster 

• all - DE wrt each other cluster



DE types - only upregulation • any - DE wrt at least one other cluster 

• joint - DE wrt all cells outside cluster 

• all - DE wrt each other cluster
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“Automatic” cell type assignment

• Idea: assign clusters or individual cells a (cell type) label, based on the 
(marker) genes that it expresses 

• Do this automatically rather than manually, for reproducibility, objectivity, 
consistency, and in order to only have to do the laborious manual cell type 
identification once 

• Focus on known signal (which may not always be the strongest signal in 
the data!)



CellAssign - input

Zhang et al, Nature Methods (2019)

• Single-cell RNA-seq data set to annotate. 

• Set of marker genes for each cell type/label. 

• Markers are assumed to be more highly expressed in the cell types they 
define compared to other cells. 

• Analyses are confined to the provided marker genes.



CellAssign - modeling

Zhang et al, Nature Methods (2019)

• Model observed raw counts (for 
marker genes) as a composite of cell 
type, library size, batch, …  

• Based on a hierarchical framework, 
estimate the probability that each cell 
belongs to each of the annotated cell 
types (can be unassigned). 

• Model parameters are estimated using 
an EM algorithm.



CellAssign - (slightly) more details

Zhang et al, Nature Methods (2019)

Y � cell-by-gene expression matrix

zn = c if cell n is of type c

Compute p(zn = c|Y, ⇥̂)

⇥̂� MAP estimates of model parameters
<latexit sha1_base64="F7S1zXIFuRXWiHoIPmi3OK98U7s="></latexit><latexit sha1_base64="F7S1zXIFuRXWiHoIPmi3OK98U7s="></latexit><latexit sha1_base64="F7S1zXIFuRXWiHoIPmi3OK98U7s="></latexit><latexit sha1_base64="F7S1zXIFuRXWiHoIPmi3OK98U7s="></latexit>

⇢gc = 1 if gene g is a marker for cell type c
<latexit sha1_base64="Kg1qFt0MPKzY5vUqQSzWUBkfOp0=">AAACLXicbVDJSgNBFOxxjXGLevTSGARPYUYEvQhBPXiMYBZIQujpvJk06WXo7hHDMD/kxV8RwUNEvPobdhZwrVNR9V73qwoTzoz1/bG3sLi0vLJaWCuub2xubZd2dhtGpZpCnSqudCskBjiTULfMcmglGogIOTTD4eXEb96BNkzJWztKoCtILFnEKLFO6pWuOnqgellM8/MAdyzcWy0yzCIcgwScx1+SwQQLooegcaQ0psA5nryIc9orlf2KPwX+S4I5KaM5ar3Sc6evaCpAWsqJMe3AT2w3I9oyyiEvdlIDCaFDEkPbUUkEmG42TZvjQ6f0pzdESlo8Vb9vZEQYMxKhmxTEDsxvbyL+57VTG511MyaT1IKks4+i1KVUs6B9poFaPnKEUM3crZgOiCbUuoKLroTgd+S/pHFcCfxKcHNSrl7M6yigfXSAjlCATlEVXaMaqiOKHtATGqNX79F78d6899nogjff2UM/4H18AtfYqHc=</latexit><latexit sha1_base64="Kg1qFt0MPKzY5vUqQSzWUBkfOp0=">AAACLXicbVDJSgNBFOxxjXGLevTSGARPYUYEvQhBPXiMYBZIQujpvJk06WXo7hHDMD/kxV8RwUNEvPobdhZwrVNR9V73qwoTzoz1/bG3sLi0vLJaWCuub2xubZd2dhtGpZpCnSqudCskBjiTULfMcmglGogIOTTD4eXEb96BNkzJWztKoCtILFnEKLFO6pWuOnqgellM8/MAdyzcWy0yzCIcgwScx1+SwQQLooegcaQ0psA5nryIc9orlf2KPwX+S4I5KaM5ar3Sc6evaCpAWsqJMe3AT2w3I9oyyiEvdlIDCaFDEkPbUUkEmG42TZvjQ6f0pzdESlo8Vb9vZEQYMxKhmxTEDsxvbyL+57VTG511MyaT1IKks4+i1KVUs6B9poFaPnKEUM3crZgOiCbUuoKLroTgd+S/pHFcCfxKcHNSrl7M6yigfXSAjlCATlEVXaMaqiOKHtATGqNX79F78d6899nogjff2UM/4H18AtfYqHc=</latexit><latexit sha1_base64="Kg1qFt0MPKzY5vUqQSzWUBkfOp0=">AAACLXicbVDJSgNBFOxxjXGLevTSGARPYUYEvQhBPXiMYBZIQujpvJk06WXo7hHDMD/kxV8RwUNEvPobdhZwrVNR9V73qwoTzoz1/bG3sLi0vLJaWCuub2xubZd2dhtGpZpCnSqudCskBjiTULfMcmglGogIOTTD4eXEb96BNkzJWztKoCtILFnEKLFO6pWuOnqgellM8/MAdyzcWy0yzCIcgwScx1+SwQQLooegcaQ0psA5nryIc9orlf2KPwX+S4I5KaM5ar3Sc6evaCpAWsqJMe3AT2w3I9oyyiEvdlIDCaFDEkPbUUkEmG42TZvjQ6f0pzdESlo8Vb9vZEQYMxKhmxTEDsxvbyL+57VTG511MyaT1IKks4+i1KVUs6B9poFaPnKEUM3crZgOiCbUuoKLroTgd+S/pHFcCfxKcHNSrl7M6yigfXSAjlCATlEVXaMaqiOKHtATGqNX79F78d6899nogjff2UM/4H18AtfYqHc=</latexit><latexit sha1_base64="Kg1qFt0MPKzY5vUqQSzWUBkfOp0=">AAACLXicbVDJSgNBFOxxjXGLevTSGARPYUYEvQhBPXiMYBZIQujpvJk06WXo7hHDMD/kxV8RwUNEvPobdhZwrVNR9V73qwoTzoz1/bG3sLi0vLJaWCuub2xubZd2dhtGpZpCnSqudCskBjiTULfMcmglGogIOTTD4eXEb96BNkzJWztKoCtILFnEKLFO6pWuOnqgellM8/MAdyzcWy0yzCIcgwScx1+SwQQLooegcaQ0psA5nryIc9orlf2KPwX+S4I5KaM5ar3Sc6evaCpAWsqJMe3AT2w3I9oyyiEvdlIDCaFDEkPbUUkEmG42TZvjQ6f0pzdESlo8Vb9vZEQYMxKhmxTEDsxvbyL+57VTG511MyaT1IKks4+i1KVUs6B9poFaPnKEUM3crZgOiCbUuoKLroTgd+S/pHFcCfxKcHNSrl7M6yigfXSAjlCATlEVXaMaqiOKHtATGqNX79F78d6899nogjff2UM/4H18AtfYqHc=</latexit>



CellAssign - output

Zhang et al, Nature Methods (2019)



singleR - input

• Single-cell RNA-seq data set 
to annotate (either cell- or 
cluster-wise). 

• Reference data set with 
pure cell types (multiple 
samples per cell type/label). 

• Both bulk (“default”) and 
single-cell reference data 
sets can be accommodated.

Aran et al, Nature Immunology 20:163-172 (2019)



singleR - first assignment

• Define set of marker 
genes to use as the basis 
for calculations. 

• For each cell, calculate 
Spearman correlation with 
all reference samples with 
a given label. 

• Cell score = given quantile 
of these correlations.

• Assign cell to label with highest score  
-> first.labels

Aran et al, Nature Immunology 20:163-172 (2019)



singleR - fine-tuning

• Keep only labels with 
highest scores. 

• Recalculate marker genes. 

• Recalculate correlations 
and scores based on these 
genes. 

• New assignments  
-> labels

Aran et al, Nature Immunology 20:163-172 (2019)



singleR - pruning

• Calculate the difference 
between the maximal 
score and the median 
score across all labels. 

• Small difference - 
ambiguous assignment. 

• For each label, find 
outliers (cells with small 
differences), and remove 
their label assignment.

• Remaining assignments  
-> pruned.labels

Aran et al, Nature Immunology 20:163-172 (2019)



singleR reference gene selection

• Each correlation is calculated based on a subset of the genes 

• Several options: 

• “de” - differentially expressed genes between each pair of labels 
(largest difference in medians); final set is the union of all pairwise sets 

• “sd” - genes with largest standard deviation of label-wise medians 

• “all” - no feature selection 

• pre-defined set

Designed for bulk references! For single-cell references, use 
other DE criterion (e.g., scran::pairwiseTTests()) or aggregate 

cells into pseudo-bulk samples



singleR built-in reference data sets



AUCell - cell annotation using gene sets

• In each cell, rank genes by expression 

• Evaluate enrichment of genes in a 
gene set, using the AUC (area under 
the recovery curve) 

• Outputs gene set "activity" score, 
which can be used to annotate cells, 
or as a summary representation of the 
data set (using a large number of 
gene sets as the “features")

Aibar et al, Nature Methods 14:1083–1086 (2017)
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