Single Cell School, Leysin, 17 October 2019

Differential abundance (DA) and differential state (DS) analysis of single cell cytometry data

Mark D. Robinson Statistical Bioinformatics Group, DMLS@UZH+SIB

Many many slides from:

Helena

Lukas

@markrobinsonca

Charlotte

Fiona

Outline

- Preliminaries
- compensation for CyTOF using single stains
- clustering "high" dimensional CyTOF
- Differential analyses (diffcyt): abundance of populations, state transitions
- Parallels to single cell RNA-seq
- Working with tree representations of cells

High-dimensional cytometry

Measure targeted protein expression levels in single cells using **antibodies**

- Fluorescent flow cytometry / FACS (A) >20 proteins/cell; 1000s cells/sec
- Mass cytometry / CyTOF (B) >40 proteins/cell; 100s cells/sec
- sequence-based cytometry (C)>100 proteins/cell

Shahi et al. (2017), Fig. 1A

Flow cytometry

Figure 1. Schematic representation of a flow cytometer. For details detector, (4) filters and mirrors, and (5) charged deflection plates.

Figure 1. Schematic representation of a flow cytometer. For details please see text. (1) Forward-scatter detector, (2) side-scatter detector, (3) fluorescence

Mass cytometry

REAP-seq / CITE-seq

Spectral overlap vs. spillover

- CyTOF = increase in the number of parameters + massive decrease in spectral overlap
- but, still three sources of signal overlap:

1.abundance
 sensitivity:= (M±1) / M
2.oxide formation: +16M
3.isotopic impurities: up
 to ±6M

FACS

Mass cytometry

mass range

Do we need to compensate CyTOF data?

The ability to multiplex up to 40 cellular subset markers in mass cytometry, without a requirement for compensation for overlap in fluorescence signals as needed in conventional flow cytometry, makes mass cytometry an ideal technology to deeply phenotype cells in complex cell populations. This feature was elegantly demonstrated by

Atkuri et al. 2015 Drug Metabolism and Disposition

The metals that are sold as part of antibody labeling kits are of very high purity (98% and higher in most cases). As a practical matter, this means that "compensation" analogous to fluorescent antibodies is not needed, as most of the signal will be of the specified mass, with little to no signal at "M+1" or another contaminating mass. However, metal salts from other commercial sources may be of lesser purity. For example, the

Leipold al. 2015 Immunosenescence: Methods and Protocols, Methods in Molecular Biology

does not equal "no spillover."

It should be made clear, though, that "minimal spillover"

Leipold Cytometry Part A, 2015

Single stain beads highlight sparsity of spillover

Compensation of Signal Spillover in Suspension and Imaging Mass Cytometry

Stéphane Chevrier,^{1,4} Helena L. Crowell,^{1,2,4} Vito R.T. Zanotelli,^{1,3,4} Stefanie Engler,¹ Mark D. Robinson,^{1,2,*} and Bernd Bodenmiller^{1,5,*} ¹Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland ²SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland ³Systems Biology Ph.D. Program, Life Science Zürich Graduate School, ETH Zürich and University of Zürich, Zürich, Switzerland ⁴These authors contributed equally ⁵Lead Contact *Correspondence: mark.robinson@imls.uzh.ch (M.D.R.), bernd.bodenmiller@imls.uzh.ch (B.B.) https://doi.org/10.1016/j.cels.2018.02.010

Ce140 Pr14 Nd142 Nd143 Nd144 Nd145 Nd146 Sm147 Nd148 Sm149 Nd150 Eu15 Sm152 Eu153 Sm154 Gd155 Gd156 Gd157 Gd158 Tb159 Gd160 Dy161 Dy162 Dy163 Dy164 Ho165 Er166 Er167 Er168 Tm169 Er170 Yb171 Yb172 Yb173 Yb174 Lu175 Yb176

La139Di -	100																1.44																		
Ce140Di -	- 1	100																																	
Pr141Di -	-		100																1.93																
Nd142Di -	-			100	0.39	0.11														1.73															
Nd143Di -	_		().78	100	2.1	0.1	0.09													1.87														
Nd144Di -	-		(0.15	0.25	100	1.53	0.44														1.88													
Nd145Di -	_		(0.05		1.08	100	3.91															1.89												
Nd146Di -			(0.01		0.16	0.13	100		0.13														1.84											
Sm147Di -	_								100	2.34	0.48			0.31		0.18									0.45										
Nd148Di -	_			1.34	0.83	1.59	0.5	1.71		100		1.39														1.67									
Sm149Di -	_								0.1	0.72	100	1.64		0.36		0.15											0.37								
Nd150Di -				0.2	0.04	0.36		0.22		0.05		100																1.38							
Eu151Di -	_												100		0.84																				
Sm152Di -											0.03			100		0.66														0.27					
Eu153Di -												(0.63		100																				
Sm154Di -														0.56		100																0.17			
Gd155Di -																	100	0.08	0.02														0.45		
Gd156Di -																	0.85	100	2.86	0.79)	0.14												0.43	
Gd157Di -																			100																
Gd158Di -																		0.16	0.95	100		0.55													0.36
Tb159Di -																					100	0.02													
Gd160Di -	_																	0.03	0.03	0.56	5	100													
Dy161Di -	-																					0.2	100	2.79	0.66	0.31									
Dy162Di -																							1.56	100	4.26	0.68									
Dy163Di -																							0.3	1.26	100	1.7									
Dy164Di -																							0.51	0.81	2.95	100	0.05								
Ho165Di -	-																										100	0.03							
Er166Di -																												100	1.48	0.26		0.01			
Er167Di -																												1.35	100	3.49		0.07			
Er168Di -	-																												0.41	100		0.05			
Tm169Di -																														0.01	100	0.09			
Er170Di -	_																											0.72	0.49	0.98	0.02	100	0.08		
Yb171Di -																																0.09	100	4.02 0.1	9 0.23
Yb172Di -																																	0.82	100 3.9	1.01
Yb173Di -	-																																0.28	1.55 100) 3.42
Yb174Di -																																		0.15 <mark>0.5</mark> 4	<mark>4</mark> 100
Lu175Di -																																			0.01
Yb176Di -					J				J	J				J									J				J						0.35	0.7 0.4	3 2.01
	La139Di -	Ce140Di	Pr141Di -	Nd142Di	Nd143Di -	Nd144Di -	Nd145Di -	Nd146Di -	Sm147Di -	Nd148Di -	Sm149Di -	Nd150Di	Eu151Di	Sm152Di -	Eu153Di -	Sm154Di -	Gd155Di -	Gd156Di -	Gd157Di	Gd158Di -	Tb159Di -	Gd160Di -	Dy161Di -	Dy162Di -	Dy163Di -	Dy164Di -	Ho165Di -	Er166Di -	Er167Di -	Er168Di -	Tm169Di	Er170Di -	Yb171Di -	Yb172Di Yb173Di -	Yb174Di -

Short answer: Yes, even ~2-5% of a high signal can be significant

clusters

PBMCs measured, clustered with Phenograph; several antibodies used twice with different metals

Correction of spillover artefacts on a 36ab panel

Spillover matrix estimated via single-stain beads: non-negative least squares

Uncompensated

R/Bioconductor CATALYST package: preprocessing (differential analysis comes later)

https://bioconductor.org/packages/release/bioc/html/CATALYST.html

Manual gating

Identification of cell populations

Verschoor et al. (2015)

Manual gating

Not feasible in highdimensional data

Bendall et al. (2011), Supp.

Comparison of clustering algorithms Algorithms for low-dimensional data: FlowCAP consortium

Critical assessment of automated flow cytometry data analysis techniques

Nima Aghaeepour¹, Greg Finak², The FlowCAP Consortium³, The DREAM Consortium³, Holger Hoos⁴, Tim R Mosmann⁵, Ryan Brinkman^{1,7}, Raphael Gottardo^{2,7} & Richard H Scheuermann^{6,7}

2013

Clustering high-dimensional flow and mass cytometry

Motivation: Many new computational methods, explosion in the number of dimensions (both FACS and CyTOF) — what works "best"?

Lukas

Lukas M. Weber,^{1,2} Mark D. Robinson^{1,2*}

EDITOR'S CHOICE

Comparison of Clustering Methods for High-Dimensional Single-Cell Flow and Mass Cytometry Data

Laundry list of methods

METHOD	ENVIRONMENT AND AV
ACCENSE	Standalone application w interface
ClusterX	R package (cytofkit) from Bioconductor
DensVM	R package (cytofkit) from Bioconductor
FLOCK	C source code (also avail ImmPort online platfo
flowClust	R package from Biocond
flowMeans	R package from Biocond
flowMerge	R package from Biocond
flowPeaks	R package from Biocond
FlowSOM	R package from Biocond
FlowSOM_pre	R package from Biocond
immunoClust	R package from Biocond
k-means PhenoGraph	R base packages (stats) Graphical interface (cyt) MATLAB (Python imp also available)
Rclusterpp	R package from GitHub
SamSPECTRAL	R package from Biocond
SPADE	R package from GitHub on Bioconductor; also
SWIFT	Graphical interface launo MATLAB
X-shift	Standalone application (graphical interface (co version also available)

REF. VIRONMENT AND AVAILABILITY SHORT DESCRIPTION Nonlinear dimensionality reduction (t-SNE) folone application with graphical 22 lowed by density-based peak-finding and clusterace ing in two-dimensional projected space. ge (cytofkit) from Density-based clustering on t-SNE projection map; 23 nductor faster than DensVM. ge (cytofkit) from Density-based clustering on t-SNE projection map; 24 similar to ACCENSE, with additional support vecnductor tor machine to classify uncertain points. Partitioning of each dimension into bins, followed e code (also available in 25 Port online platform) by merging of dense regions, and density-based clustering. Model-based clustering based on multivariate t mixge from Bioconductor 26 ture models with Box-Cox transformation. ge from Bioconductor Based on k-means, with merging of clusters to allow 27 non-spherical clusters. ge from Bioconductor Extension of flowClust; merges cluster mixture com-28 ponents from flowClust. Peak-finding on smoothed density function generatge from Bioconductor 29 ed by k-means; using finite mixture model. Self-organizing maps, followed by hierarchical conge from Bioconductor 30 sensus meta-clustering to merge clusters. ge from Bioconductor Same as FlowSOM, but without the final consensus 30 meta-clustering step. ge from Bioconductor Iterative clustering based on finite mixture models, 31 using expectation maximization and integrated classification likelihood. Standard k-means clustering. backages (stats) al interface (cyt) launched from Construction of nearest-neighbor graph, followed by 18 LAB (Python implementation partitioning of the graph into sets of highly interconnected points ("communities"). vailable) Large-scale implementation of standard hierarchical ge from GitHub (older version 32 RAN) clustering, with improved memory requirements. Spectral clustering, with modifications for improved ge from Bioconductor 33 memory requirements. "Spanning-tree progression analysis of densityge from GitHub (older version 34 oconductor; also available in normalized events"; organizes clusters into a oank online platform) branching hierarchy of related phenotypes. al interface launched from Iterative fitting of Gaussian mixture models by 35 expectation maximization, followed by splitting LAB and merging of clusters using a unimodality criterion. Weighted k-nearest-neighbor density estimation, one application (VorteX) with 17 ical interface (command-line detection of local density maxima, connection of

points via graph, and cluster merging.

Table 1. Overview of clustering methods compared in this study

Manually gated populations

Table 2. Summary of data sets used to evaluate clustering methods												
DATA SET	CYTOF OR FLOW CYTOMETRY	CLUSTERING TASK	NO. OF CELLS	NO. OF DIMENSIONS	NO. OF MANUALLY GATED POPULATIONS OF INTEREST	NO, OF MANUALLY GATED CELLS	ORGANISM	NO. OF INDIVIDUALS (PATIENTS, MICE)	SAMPLE DESCRIPTION			
Levine_32dim	CyTOF	Multiple populations	265,627	32 (surface markers)	14	104,184 (39%)	Human	2	Bone marrow cells from healthy donors	(
Levine_13dim	CyTOF	Multiple populations	167,044	13 (surface markers)	24	81,747 (49%)	Human	1	Bone marrow cells from healthy donor	(
Samusik_01	CyTOF	Multiple populations	86,864	39 (surface markers)	24	53,173 (61%)	Mouse	1	Replicate bone marrow samples from C57BL/6J mice (sample 01 only)	(
Samusik_all	CyTOF	Multiple populations	841,644	39 (surface markers)	24	514,386 (61%)	Mouse	10	Replicate bone marrow samples from C57BL/6J mice (all samples)	(
Nilsson_rare	Flow cytometry	Rare population	44,140	13 (surface markers)	1 (hematopoietic stem cells)	358 (0.8%)	Human	1	Bone marrow cells from healthy donor	(
Mosmann_rare	Flow cytometry	Rare population	396,460	14 (surface and intracellular)	1 (activated memory CD4 T cells)	109 (0.03%)	Human	1	Peripheral blood cells from healthy donor, stimulated with influenza antigens	(

Manual gates = "truth"

Comparison of clustering methods

Hungarian algorithm to match clusters to populations

F1 score

From Wikipedia, the free encyclopedia

"F score" redirects here. For the significance test, see F-test.

In statistical analysis of binary classification, the F₁ score (also F-score or F-measure) is a measure of a test's accuracy. It considers both the precision p and the recall r of the test to compute the score: p is the number of correct positive results divided by the number of all positive results, and r is the number of correct positive results divided by the number of positive results that should have been returned. The F₁ score can be interpreted as a weighted average of the precision and recall, where an F_1 score reaches its best value at 1 and worst at 0.

The traditional F-measure or balanced F-score (F_1 score) is the harmonic mean of precision and recall — multiplying the constant of 2 scales the score to 1 when both recall and precision are 1:

$$F_1 = 2 \cdot rac{1}{rac{1}{ ext{recall}} + rac{1}{ ext{precision}}} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}} \,.$$

- several methods performed well: <u>FlowSOM</u>, <u>X-shift</u>, <u>PhenoGraph</u>, <u>Rclusterpp</u>, <u>flowMeans</u>
- FlowSOM gave best performance (for several data sets) and was fast
- **X-shift** gave best performance for rare cell populations
- several methods sensitive to random starts (rare populations)
- code, data freely available

Comparison of clustering methods

Revealing the vectors of cellular identity with single-cell genomics

Allon Wagner¹, Aviv Regev^{2,3,5} & Nir Yosef^{1,4,5}

Box 1 The many facets of a cell's identity

We define a cell's *identity* as the outcome of the instantaneous intersection of all factors that affect it. We refer to the more permanent aspects in a cell's identity as its *type* (e.g., a hepatocyte typically cannot turn into a neuron) and to the more transient elements as its *state*. Cell types are often organized in a hierarchical

Type: more permanent State: more transient

Perspective

Defining cell types and states with single-cell genomics

Cole Trapnell

Department of Genome Sciences, University of Washington, Seattle, Washington 98105, USA

Data structure and differential analysis

Two types of differential analysis

differential abundance (DA) of cell populations

differential states

e.g., differential expression of functional proteins (e.g., signaling) within cell populations

Motivation for differential analysis: finding cancer biomarkers

Lukas M Weber^{2,3}, Reinhard Dummer⁵, Mark D Robinson^{2,3}, Mitchell P Levesque^{5,7} & Burkhard Becher^{1,7}

Analysis pipelines

Cytometry workflow: looking across multiple samples

F1000Research

METHOD ARTICLE CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets [version 3; peer review: 2 approved]

Malgorzata Nowicka^{1,2}, Carsten Krieg³, Helena L. Crowell^{1,2}, Lukas M. Weber ^(1,2), Felix J. Hartmann ⁽¹⁾³, Silvia Guglietta⁴, Burkhard Becher³, Mitchell P. Levesque⁵, Mark D. Robinson ^{(1)1,2}

F1000 Bioconductor channel workflow published May 2017; updated May 2019 with drastically simplified code (functionality in CATALYST); will be updated again in Oct 2019 because of changes in BioC (again simplifications)

Gosia

Helena

Key elements of CyTOF workflow

- Exploration of various data aspects at each step
- Separation of type and state markers
- Put all samples together and cluster (FlowSOM or other)
- Optional: manually merge clusters (via visualizations: heatmaps, low dimensional projections)
- Differential abundance analysis (count-based model, somewhat similar to RNA-seq)
- For state markers, differential state analysis (aggregate and use linear model)

Merging clusters from 20 to 7

Carsten Krieg, now at MUSC PBMCs from metastatic melanoma patients, comparing responders to non-responders)

0.21 0.20 myeloid (18.58%)

Good / Bad news: large batch effect, but nice experimental design (all conditions in every batch) so can be separated in statistical models.

Part 1:

After clustering (and manual merging), generalized linear mixed model is applied to cell count table to find differential abundance (n.b.: similar to RNA-seq differential expression).

High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy

Carsten Krieg^{1,6}, Malgorzata Nowicka^{2,3}, Silvia Guglietta⁴, Sabrina Schindler⁵, Felix J Hartmann¹, Lukas M Weber^{2,3}, Reinhard Dummer⁵, Mark D Robinson^{2,3}, Mitchell P Levesque^{5,7} & Burkhard Becher^{1,7}

Bioconductor workflow

Manual merging of cell populations based on phenotypes

Generalized linear mixed models (differential abundance) $E(Y_{ij} \mid \beta_0, \beta_1, \gamma_i)$ Linear mixed models (differential expression within populations)

$$Y_{ij} = \beta_0 + \beta_1 x_{ij} + \gamma_i + \epsilon_{ij},$$

$$(\xi_{ij}) = logit^{-1}(\beta_0 + \beta_1 x_{ij} + \gamma_i + \xi_i)$$

Limitations of existing methods

Method	Short description	Limitations
Citrus	Uses hierarchical clustering and regularized regression or classification models to select predictive features, such as cluster abundances or median expression of functional markers, that are associated with an outcome of interest	 Detected features cannot be ranked Lasso-regularized models cannot easy correlated features Rare cell populations cannot easily be minimum cluster size requirement at limitations Response variable is the clinical oute makes it difficult to account for com designs (including batch effects, pair continuous covariates)
CellCnn	Applies convolutional neural networks in a representation learning framework to detect rare cell populations associated with an outcome of interest; designed specifically for detecting rare cell populations	 Ranking of detected cells cannot be of statistical significance Interpretation of detected population filters) can be difficult, since they manultiple distinct cell populations Response variable is the clinical oute makes it difficult to account for come designs (including batch effects, pair continuous covariates) All protein markers are treated identic conceptual split between cell type at functional) markers
cydar	Assigns cells to overlapping hyperspheres in the high- dimensional space; tests for differential abundance between hyperspheres using moderated tests from <i>edgeR</i> ^{15,16} , while controlling the spatial false discovery rate among overlapping hyperspheres	 Rare cell populations cannot easily be relatively small volume in the high-d All protein markers are treated ident conceptual split between cell type ar (or functional) markers
<i>classic</i> regression- based approach	Automated clustering using <i>FlowSOM</i> ¹⁴ , followed by manual merging and annotation to define cell populations; differential testing of features such as population abundances or median expression of functional markers using generalized linear mixed models, linear mixed models, or linear models	 Manual merging and annotation step biological knowledge, and can be tim subjective When testing large numbers of clust cell populations: loss of statistical po- testing penalty; no sharing of inform

description of the methodology and a summary of limitations are provided

Ref.

by importance sily detect multiple

be detected, due to nd computational

come variable, which plex experimental red designs, and

interpreted in terms

ns (referred to as ay be composed of

come variable, which plex experimental red designs, and

tically; there is no nd cell state (or

detected, due to their ¹¹ limensional space tically; there is no nd cell state

p requires expert ne-consuming and

12

ers, e.g. to detect rare ower due to multiple ation across clusters

ARTICLE

https://doi.org/10.1038/s42003-019-0415-5

OPEN

diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering

Lukas M. Weber (1)^{1,2}, Malgorzata Nowicka^{1,2,3}, Charlotte Soneson (1)^{1,2,4} & Mark D. Robinson (1)^{1,2}

n.b. Citrus/CellCnn models are reversed to ours (response variable: patient/experimental condition; explanatory variables: CyTOF measurements)

cydar doesn't distinguish type and state

diffcyt: differential tests more formalised

Lukas ARTICLE https://doi.org/10.1038/s42003-019-0415-5 **OPEN** diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering Lukas M. Weber (1)^{1,2}, Malgorzata Nowicka^{1,2,3}, Charlotte Soneson (1)^{1,2,4} & Mark D. Robinson (1)^{1,2}

> **Note: for differential state** analysis, aggregates are always taken. We are testing this now with scRNA-seq data

diffcyt: Bioconductor package

Home » Bioconductor 3.9 » Software Packages » diffcyt

diffcyt

Differential discovery in high-dimensional cytometry via high-resolution clustering

Bioconductor version: Release (3.9)

Statistical methods for differential discovery analyses in high-dimensional cytometry data (including flow cytometry, mass cytometry or CyTOF, and oligonucleotide-tagged cytometry), based on a combination of high-resolution clustering and empirical Bayes moderated tests adapted from transcriptomics.

Interoperable with CATALYST for pipelines

Help

Split each healthy sample into 3 equal parts; computationally "spike in" CN and CBF cells

Repeat for different thresholds: 5%, 1%, 0.1%, 0.01%

(strategy adapted from <u>Arvaniti et al., 2017</u>)

Differential abundance detection performance across methods

Clustered here to 100 groups; for each, look across samples in functional marker

median lineage marker signal by cluster

Part 2: subpopulationspecific differential analyses ("state")

median functional marker signal by sample

diffcyt: benchmarking

Sensitivity

density

BCR-XL-sim: main simulation and 'less distinct' populations

arcsinh transformed expression

Differential state detection performance across methods

Some notes on CyTOF differential discovery

- Flexibility in definition of type and state
- For rare populations, ability to detect changes in abundance is driven jointly by "distinctness" (clustering) and "rarity" (more abundant ->easier); also related to depth of sampling
- Fairly wide range in the "sweet spot" of clustering
- Cell type assignment as an alternative to clustering is easily accommodated

HDCytoData package

Collection of benchmark datasets in Bioconductor formats

HDCytoData

Collection of high-dimensional cytometry benchmark datasets in Bioconductor object formats

Bioconductor version: Release (3.9)

Data package containing a collection of high-dimensional cytometry benchmark datasets saved in SummarizedExperiment and flowSet Bioconductor object formats, including row and column metadata describing samples, cell populations (clusters), and protein markers.

Author: Lukas M. Weber [aut, cre], Charlotte Soneson [aut]

Maintainer: Lukas M. Weber < lukmweber at gmail.com>

Citation (from within R, enter citation("HDCytoData")):

Weber L, Soneson C (2019). HDCytoData: Collection of high-dimensional cytometry benchmark datasets in Bioconductor object formats. R package version 1.4.0, https://github.com/Imweber/HDCytoData.

HDCytoData package

Bioconductor ExperimentHub

- > library(HDCytoData)
- > data SE <- Levine 32dim SE()</pre>
- > data flowSet <- Levine 32dim flowSet()</pre>
- > ehub <- ExperimentHub()</pre>
- > query(ehub, "HDCytoData")
- > data SE <- ehub[["EH1119"]]</pre>
- > data flowSet <- ehub[["EH1120"]]</pre>

After "Cell Type Prediction" / "Clustering", various ways to view the differential state inference problem

Multi-sample Multi-condition Multi-population

Flexible simulation

- knobs for: sample size, # of cells, changes in abundance, subpopulationspecific state changes
- batch effects?

t-SNE

2

dim.

countsimQC: comparing simulated data to real data

cell-level properties

Aggregation works well, mixed models work well. DB especially difficult to detect

AD = Anderson-Darling MM = mixed models

FDR

edgeR.sum(counts) edgeR.sum(scalecpm) limma-voom.sum(counts) limma-trend.mean(logcounts) limma-trend.mean(vstresiduals)

MAST.logcounts AD-gid.logcounts AD-gid.vstresiduals AD-sid.logcounts AD-sid.vstresiduals

Current rating

PB = pseudobulk AD = Anderson-Darling MM = mixed models

Application to LPS dataset: clustering + annotation subpopulations

Data from: 4 mice treated with vehicle 4 mice treated with LPS

frontal cortex

single nuclei RNA-seq (10x)

usual preprocessing: filtering, doublet removal, Seurat integration, clustering

Aqp4 Gfap Fgfr3 Cldn5 Nostrin C1qb Tyrobp Snap25 Stmn2 Slc17a7 Gad1 Opalin Pdgfra - 0 0 4 Φ ab

muscat

Application to LPS dataset: subpopulation-level visualization

Data from: 4 mice treated with vehicle 4 mice treated with LPS

Each dot is one subpopulation/ sample combination

(muscat)

Application to LPS dataset: go back to cell-level response (discovery based on pseudobulk)

workflowr !

Application to LPS dataset: look at genes (genesets) changing {within specific, common across} subpopulations

DE genes related to chemokine receptor binding

LPS dataset: interplay of cell type and cell state

Motivation: can we use the tree information in the differential inferences?

Give more space to orange branch; The visualization is on the leaf level (blue points)

Visualization: TreeHeatmap

Change visualization to a specified level

The structure

The components

Note: The tip labels of the row tree are different to the row names of the row data

data	a			> c	ol_data	a					
A_1	A_2	B_1	B_2	Dat	aFrame	with	4	rows	and	2	co
0	0	0	0			gg		gı	roup		
Ŭ	•	Ŭ	Ŭ		<numei< td=""><td>ric> <</td><td><cł< td=""><td>naract</td><td>cer></td><td></td><td></td></cł<></td></numei<>	ric> <	<cł< td=""><td>naract</td><td>cer></td><td></td><td></td></cł<>	naract	cer>		
1	5	9	13	A 1		1			А		
2	6	10	14	2	2	2			A		
3	7	11	15	B_1		3			в		
4	8	12	16	В_2	!	3			В		

111	m	- 17	- -	s	
- 4			-		
	_				
				•	••
_2					
	•				

Discussion points

- Framework that explicitly builds in type and state
- Differential (relative) abundance bears similarity to RNA-seq DE: cluster cell counts
- Differential state also bears similarity to DE, but on aggregates (microarrays for CyTOF, RNA-seq for scRNA-seq)
- Linear modelling approaches always worth their weight in gold .. flexibility for experimental designs .. fast, sensitive to find many types of changes
- Can we get everything from aggregates? (We are still finding out) • How to best use batch correction methods, cell type assignment methods
- Use of trees (TreeSummarizedExperiment and friends)
- Code/data is available for basically everything we do

Statistical Bioinformatics Group, IMLS, UZH

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO **SWISS NATIONAL SCIENCE FOUNDATION**

University of Zurich

URPP Evolution in Action: From Genomes to Ecosystems

Chan Zuckerberg **Initiative**

Roche

scRNAseq: Dheeraj Maholtra Daniela Calini

CyTOF: Carsten Krieg **Burkhard Becher** Mitch Levesque

CATALYST: Helena Crowell Vito Zanotelli **Stephane Chevrier Bernd Bodenmiller**

