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Why integrate?

Donor 1
Donor 2
Donor 3
Donor 4

Same tissue from different donors

Sick
Healthy

Cell Type 1
Cell Type 2
Cell Type 3

Cross condition comparisons
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Building a cell atlas
8 maps of the human pancreas
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Building a cell atlas
8 maps of the human pancreas
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Confounders and batch effects

1. Technical variability
• Changes in sample quality/processing

• Library prep or sequencing technology

• ‘Experimental reality’

Technical ‘batch effects’ confound downstream analysis

2. Biological variability
• Patient differences

• Environmental/genetic perturbation

• Evolution! (cross-species analysis)

Biological ‘batch effects’ confound comparisons of 
scRNA-seq data
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Shaham et al. (https://doi.org/10.1093/bioinformatics/btx196)

https://doi.org/10.1093/bioinformatics/btx196


Confounders and batch effects
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Hicks et al. (https://doi.org/10.1093/biostatistics/kxx053)

Don’t design your experiment like this!!!

Confounded design Not confounded design

Good experimental design does not remove batch 
effects, it prevents them from biasing your results.

https://doi.org/10.1093/biostatistics/kxx053


Outline

• Single cell batch Correction methods: 

• Performance assessment

• Sample multiplexing 

• Simultaneous mRNA and protein profiling: REAP-seq and CITE-seq
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Batch correction methods

• Many good options have been developed for bulk RNA-seq data:
• RUVseq() or svaseq()

• Linear models with e.g. removeBatchEffect() in limma or scater

• ComBat() in sva

• …

• But bulk RNA-seq methods make modelling assumptions that are likely to be 
violated in scRNAseq data (do they?)
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Batch correction methods

• MNNcorrect (https://doi.org/10.1038/nbt.4091)

• CCA + anchors (Seurat v3) (https://doi.org/10.1101/460147)

• CCA + dynamic time warping (Seurat v2) (https://doi.org/10.1038/nbt.4096)

• LIGER (https://doi.org/10.1101/459891)

• Harmony (https://doi.org/10.1101/461954)

• Conos (https://doi.org/10.1101/460246)

• Scanorama (https://doi.org/10.1101/371179)

• scMerge (https://doi.org/10.1073/pnas.1820006116)

• …
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Two broad strategies:
• Joint dimension reduction
• Graph-based joint clustering

https://doi.org/10.1038/nbt.4091
https://doi.org/10.1101/460147
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1101/459891
https://doi.org/10.1101/461954
https://doi.org/10.1101/460246
https://doi.org/10.1101/371179
https://doi.org/10.1073/pnas.1820006116
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Two broad strategies:
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Mutual Nearest Neighbors (MNN)
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Haghverdi et al. (https://doi.org/10.1038/nbt.4091)

https://doi.org/10.1038/nbt.4091


Mutual Nearest Neighbors (MNN)
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Mutual Nearest Neighbors (MNN)
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Mutual Nearest Neighbors (MNN)
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Mutual Nearest Neighbors (MNN)
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Mutual Nearest Neighbors (MNN)
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Mutual Nearest Neighbors (MNN)
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MEPs: megakaryocyte–erythrocyte progenitors
GMPs: granulocyte–monocyte progenitors
CMPs: common myeloid progenitors



Mutual Nearest Neighbors (MNN)

• Pooling experiments -> 
increased statistical power
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CCA + anchors (Seurat v3)

1. Find corresponding cells across datasets

2. Compute a data adjustment based on correspondences between cells

3. Apply the adjustment

Stuart et al. (https://doi.org/10.1101/460147)

Query Reference

19

https://doi.org/10.1101/460147


Principle component analysis

Werner et al. (https://doi.org/10.1371/journal.pone.0113083)
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https://doi.org/10.1371/journal.pone.0113083


Finding corresponding cells
Canonical correlation analysis and normalization

PC1

P
C

2

CC1
C

C
2

Batch 1
Batch 2

CCA captures correlated sources of variation between two datasets 21



Finding corresponding cells
Canonical correlation analysis and normalization

L2-normalization corrects for differences in scale

Seurat(v3)::FindIntegrationAnchors
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Finding corresponding cells
Anchors: mutual nearest neighbors

Seurat(v3)::FindIntegrationAnchors
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Finding corresponding cells
Data integration

1. Calculate the matrix 𝐵, where each column represents the 
difference between the two expression vectors for every 
pair of anchor cells 𝑎

2. Construct a weight matrix 𝑊 that defines the strength of 
association between each query cell 𝑐, and each anchor 𝑖

3. Calculate a transformation matrix 𝐶 using the previously 
computed weights matrix and the integration matrix as

4. Subtract the transformation matrix 𝐶 from the original 
expression matrix 𝑌to produce the integrated expression 
matrix 𝑌

Seurat(v3)::IntegrateData
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CCA + anchors (Seurat v3)

Retinal bipolar datasets: 51K cells, 6 technologies, 2 Species 25



Label transfer (classification)
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Weighted vote classifier
What is the classification of each cells nearest anchors?



Integration across modalities
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LIGER 
Linked Inference of Genomic Experimental Relationships

1) Integrative non-negative matrix 
factorization (iNMF) to learn a shared low-
dimensional space

2) Perform joint clustering on the shared 
factor neighborhood graph

• Factors are interpretable due to non-negative 
constraint

• Finds set of dataset-specific factors and a set 
of shared factors
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Welch et al. (https://doi.org/10.1101/459891)

https://doi.org/10.1101/459891


LIGER 
Linked Inference of Genomic Experimental Relationships

• Joint clustering of gene expression and DNA methylation data
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Performance assessment

• Qualitative (visualization)

• Quantitative:
• Silhouette score

• kBET: k-nearest-neighbor batch-effect test

• …
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Silhouette score

A score for each cell that assesses the separation of cell 
types, with a high score suggesting that cells of the same 
cell type are close together and far from other cells of a 
different type.

𝑎 𝑖 is the average distance of cell 𝑖 to all other cells 
within 𝑖’s cluster.

𝑏 𝑖 is the average distance of 𝑖 to all cells in the nearest 
cluster to which 𝑖 does not belong.

Silhouette score: 
31

𝑠 𝑖 =
𝑏 𝑖 − 𝑎(𝑖)

max(𝑎 𝑖 , 𝑏(𝑖))

𝑎 𝑖 =
1

𝐶𝑖


∀𝑗

𝑑(𝑥𝑖 , 𝑥𝑗)

𝑏 𝑖 = min
∀𝑗,𝑗∉𝐶𝑖

𝑑(𝑥𝑖 , 𝑥𝑗)

𝑆 =
1

𝑁
𝑠(𝑖)



kBET: k-nearest-neighbor batch-effect test

Büttner et al. (https://doi.org/10.1038/s41592-018-0254-1)
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https://doi.org/10.1038/s41592-018-0254-1


kBET is more responsive than other batch 
tests on simulated data
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kBET assesses data-integration quality

34



Summary (so far)

• Integration can allow us to improve the interpretation of single-cell data, and build 
a multi-modal view of the tissue

• Numerous methods now available for integration, mainly using joint dimension 
reduction, or joint clustering, or a combination of both

• Joint dimension reduction can yield interpretable factors and aid in the 
identification of equivalent states, but is computationally expensive

• Graph-based methods alone can be extremely fast, but may struggle when 
technical differences are on a similar scale to biological differences
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Sample multiplexing

• To simultaneously measure cells combined from different 
samples/conditions/…
• Pool many cells together in the same run

• Mitigates technical effects

• Able to identify conditions from output data
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Multiplexing solves few problems

Cost Doublets Batch effects
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Demuxlet
Natural SNPs 

Kang et al. (https://doi.org/10.1038/nbt.4042)
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https://doi.org/10.1038/nbt.4042


Cell hashing with barcoded antibodies

Stoeckius et al. (https://doi.org/10.1186/s13059-018-1603-1)
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https://doi.org/10.1186/s13059-018-1603-1


DNA-barcoded antibodies

Stoeckius et al. (https://doi.org/10.1038/nmeth.4380)
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https://doi.org/10.1038/nmeth.4380


Equal concentration mixing of PBMCs from eight human donors A-H

Cell hashing with barcoded antibodies
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Validation by comparison to Demuxlet 

● Using genetic variations (SNPs) to 
determine the sources of cells 
(individuals)

Cell hashing with barcoded antibodies
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Cell hashing with barcoded antibodies

Commercialized by BioLegend (TotalSeq™)

● Human: hashtags are made of two antibodies, CD298 and β2 
microglobulin

● Mouse: hashtags are made of two antibodies, CD45 and H-2 MHC class I
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REAP-seq CITE-seq
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REAP-seq
RNA expression and protein sequencing assay
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CITE-seq
Cellular Indexing of Transcriptomes and Epitopes by Sequencing

Stoeckius et al. (https://doi.org/10.1038/nmeth.4380)
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https://doi.org/10.1038/nmeth.4380


CITE-seq
Cellular Indexing of Transcriptomes and Epitopes by Sequencing

Stoeckius et al. (https://doi.org/10.1038/nmeth.4380)
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https://doi.org/10.1038/nmeth.4380


Single cell Multi-omics
Same cell
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Macaulay et al. (https://doi.org/10.1016/j.tig.2016.12.003)

https://doi.org/10.1016/j.tig.2016.12.003


Single cell isoform RNA sequencing 
ScISOr-seq
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Gupta*, Collier* et al. (https://doi.org/10.1038/nbt.4259)

https://doi.org/10.1038/nbt.4259


Multi-omics factor analysis
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Argelaguet et al. (https://doi.org/10.15252/msb.20178124)

https://doi.org/10.15252/msb.20178124


Summary

• Batch effects sometimes not avoidable

• Many batch correction/integration methods available, mainly using joint dimension 
reduction, or joint clustering, or a combination of both 

• Performance assessment is challenging

• Sample multiplexing can help alleviate batch effects

• Simultaneous mRNA and protein profiling: REAP-seq and CITE-seq

• Several single cell multi-omics technologies
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Data integration practical

• MNN correction

• Seurat v3

• Four pancreatic datasets
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Resources

• Stuart et al. “Comprehensive integration of single cell data”

https://www.biorxiv.org/content/10.1101/460147v1

• Haghverdi et al. “Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest 
neighbors”

https://doi.org/10.1038/nbt.4091

• Tim Stuart “Integration and harmonization of single-cell data” (Satija Lab single cell genomics day 2019) 

https://satijalab.org/scgd/

• Andrew Butler “Batch Correction and Data Integration for Single Cell Transcriptomics” (Satija Lab single cell 
genomics day 2018)

https://satijalab.org/scgd18/

• Orchestrating Single-Cell Analysis with Bioconductor

https://osca.bioconductor.org/

• Hemberg’s group course: Analysis of single cell RNA-seq data

https://scrnaseq-course.cog.sanger.ac.uk/website/index.html

• Seurat Integration and Label Transfer tutorial

https://satijalab.org/seurat/v3.0/pancreas_integration_label_transfer.html 53
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