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Why integrate?
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Building a cell atlas

8 maps of the human pancreas
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Baron et al. 2016, Cell Syst.
Lawlor et al. 2017, Genome Res.
Grun et al. 2016, Cell Stem Cell
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Building a cell atlas

8 maps of the human pancreas
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Confounders and batch effects

1. Technical variability
* Changes in sample quality/processing
* Library prep or sequencing technology
e ‘Experimental reality’

Technical ‘batch effects’ confound downstream analysis

2. Biological variability
* Patient differences
* Environmental/genetic perturbation
* Evolution! (cross-species analysis)

Biological ‘batch effects’ confound comparisons of
scRNA-seq data

Shaham et al. (https://doi.org/10.1093/bioinformatics/btx196)
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Confounders and batch effects
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Good experimental design does not remove batch

effects, it prevents them from biasing your results.

1 :dnoig 7 :dnoun ¢ :dnoJn

ugisap Apnis paouejeg

d

a DD‘m

A_A_A_ _H__H_D m
a4 N
<4 o) FE

d g O b
N 000 |2
00 | £

C o &

aicl

atcl

ato
Group 1 Group2 Group 3

sauad pajrelap Jo uondodold
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Hicks et al. (https://doi.org/10.1093/biostatistics/kxx053)
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Outline

Single cell batch Correction methods:

Performance assessment

Sample multiplexing

Simultaneous mRNA and protein profiling: REAP-seq and CITE-seq



Batch correction methods

 Many good options have been developed for bulk RNA-seq data:
* RUVseq() or svaseq()
* Linear models with e.g. removeBatchEffect() in limma or scater
e ComBat() in sva

e But bulk RNA-seg methods make modelling assumptions that are likely to be
violated in scRNAseq data (do they?)



Batch correction methods

* MINNcorrect (https://doi.org/10.1038/nbt.4091)

e CCA + anchors (Seurat v3) (nhttps://doi.org/10.1101/460147)

e CCA + dynamic time warping (Seurat v2) (https://doi.org/10.1038/nbt.4096)

* LIGER (https://doi.org/10.1101/459891)

* Ha rmony (https://doi.org/10.1101/461954)

e Conos (https://doi.org/10.1101/460246) Two broad strategies:

* Scanorama (https://doi.org/10.1101/371179) * Joint dimension reduction
* Graph-based joint clustering

* scMerge (https://doi.org/10.1073/pnas.1820006116)



https://doi.org/10.1038/nbt.4091
https://doi.org/10.1101/460147
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1101/459891
https://doi.org/10.1101/461954
https://doi.org/10.1101/460246
https://doi.org/10.1101/371179
https://doi.org/10.1073/pnas.1820006116

Batch correction methods

MNNcorrect (https://doi.org/10.1038/nbt.4091)

CCA + anchors (Seurat v3) (nhttps://doi.org/10.1101/460147)

CCA + dynamic time warping (Seurat v2) (https://doi.org/10.1038/nbt.4096)

LIGER (https://doi.org/10.1101/459891)

Ha rmony (https://doi.org/10.1101/461954)

Conos (https://doi.org/10.1101/460246)

Scanorama (https://doi.org/10.1101/371179)

scMerge (https://doi.org/10.1073/pnas.1820006116)

Two broad strategies:
e Joint dimension reduction
* Graph-based joint clustering
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Mutual Nearest Neighbors (MNN)

a b

C d e Batch 3

Haghverdi et al. (https://doi.org/10.1038/nbt.4091)
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Mutual Nearest Neighbors (MNN)
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Mutual Nearest Neighbors (MNN)

tSNE 2

®e
* O
*
%o
B Batch 1
B Batch 2
A A @ Bcells
A:A A TCells
A A

* Nearest Neighbor

tSNE 1

13



Mutual Nearest Neighbors (MNN)
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Mutual Nearest Neighbors (MNN)
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Mutual Nearest Neighbors (MNN)

( genel, — genel,, \
gell Lfgm . 1) For each MNN pair, a pair-specific batch-correction gene2, — genez,
atc vector is computed as the vector difference between V, = gened, — genedy,
v the expression profiles of the paired cells. . .

Cell j from N
Batch A . \Eff'f-?f~\::—£ff'fff Ny

Ve
O Gaussian Kernel

2)A ce_l l-specific t_Jatch- D \ Smoothing Batch Correction vector
correction vector is then for each cell

calculated as a weighted — A . "
average of these pair-specific U b Real valued function .
vectors, as computed with a f-RPR
Gaussian kernel. 0 as the weighted average of

V.

neighboring observed data

batch B Corrected Batch B batch A

merge
Batch Correction  _ -~ r
Vector for each cell
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Mutual Nearest Neighbors (MNN)

limma ComBat

Uncorrected
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\
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© MEP MEP MEPs: megakaryocyte—erythrocyte progenitors
® GMP GMP GMPs: granulocyte—monocyte progenitors
e CMP CMP CMPs: common myeloid progenitors

\_ /
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Mutual Nearest Neighbors (MNN)

e Pooling experiments ->
increased statistical power
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CCA + anchors (Seurat v3)

1. Find corresponding cells across datasets

2. Compute a data adjustment based on correspondences between cells

3. Apply the adjustment
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Stuart et al. (https://doi.org/10.1101/460147)
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Principle component analysis

Werner et al. (https://doi.org/10.1371/journal.pone.0113083)
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Finding corresponding cells

Canonical correlation analysis and normalization
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CCA captures correlated sources of variation between two datasets o’
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Seurat(v3)::FindIntegrationAnchors

Finding corresponding cells

Canonical correlation analysis and normalization
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L2-normalization corrects for differences in scale )



Seurat(v3)::FindIntegrationAnchors

Finding corresponding cells

Anchors: mutual nearest neighbors

High-scoring correspondence Low-scoring correspondence

Anchors are consistent with local neighborhoods Anchors are inconsistent with local neighborhoods
Reference
5 ) Reference
@
)
. w
o ©
O Query = @
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Seurat(v3)::IntegrateData

Finding corresponding cells

Data integration

1. Calculate the matrix B, where each column represents the
difference between the two expression vectors for every B=X|,a]-Y|,q
pair of anchor cells a

el

2. Construct a weight matrix W that defines the strength of W. = — D"{'-"
association between each query cell ¢, and each anchor i ‘ -’]':‘E‘“"""”gm D.;

3. Calculate a transformation matrix C using the previously C—pwT
computed weights matrix and the integration matrix as —

4. Subtract the transformation matrix € from the original F_v_C

expression matrix Yto produce the integrated expression
matrix Y



CCA + anchors (Seurat v3)

Cell type Technology

@ 10x ® celseq2 @ indrop
® celseq ® fluidigmc1 @ smartseq2
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Label transfer (classification)

B Pancreas celltype projections: alpha cells withheld
Seurat v3 scMap-cluster
schwann
Label TranSfer quiescent stellate
mast
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Integration across modalities
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LIGER

Linked Inference of Genomic Experimental Relationships

g genes k factors g genes
1) Integrative non-negative matrix
factorization (iINMF) to learn a shared low- X
dimensional space a7
2) Perform joint clustering on the shared

g genes k factors g genes

factor neighborhood graph

* Factors are interpretable due to non-negative
constraint

* Finds set of dataset-specific factors and a set
of shared factors

Welch et al. (https://doi.org/10.1101/459891)
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LIGER

Linked Inference of Genomic Experimental Re

* Joint clustering of gene expression and DNA methyl
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Performance assessment

e Qualitative (visualization)

 Quantitative:

* Silhouette score
* KBET: k-nearest-neighbor batch-effect test



Silhouette score

A score for each cell that assesses the separation of cell
types, with a high score suggesting that cells of the same
cell type are close together and far from other cells of a
different type.

a(i) is the average distance of cell i to all other cells
within i’s cluster.

b(i) is the average distance of i to all cells in the nearest
cluster to which i does not belong.

1
Silhouette score: S = Nz s(i)

b(i) — a(i)

s() = max(a(i), b(i))

1
a(i) = WZ] d(x;, %)

b(i) = Uiy d(x;, xj)



KBET: k-nearest-neighbor batch-effect test

c Well-normalized data d Badly normalized data
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Blttner et al. (https://doi.org/10.1038/s41592-018-0254-1)
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KBET is more responsive than other batch
tests on simulated data
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KBET assesses data-integration qual

Dataset
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Summary (so far)

Integration can allow us to improve the interpretation of single-cell data, and build
a multi-modal view of the tissue

Numerous methods now available for integration, mainly using joint dimension
reduction, or joint clustering, or a combination of both

Joint dimension reduction can yield interpretable factors and aid in the
identification of equivalent states, but is computationally expensive

Graph-based methods alone can be extremely fast, but may struggle when
technical differences are on a similar scale to biological differences



Sample multiplexing

e To simultaneously measure cells combined from different
samples/conditions/...
* Pool many cells together in the same run
* Mitigates technical effects
* Able to identify conditions from output data



Multiplexing solves few problems

Cost Doublets

PC2

Batch effects

PC1
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Demuxlet
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Cell hashing with barcoded antibodies

*%

Cell pooling

Library preparation,
& sequencing

Analysis &
demultiplexing

Samples Label with
hashtag oligos
(HTO)
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Stoeckius et al. (https://doi.org/10.1186/s13059-018-1603-1)
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DNA-barcoded antibodies
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Cell hashing with barcoded antibodies

Equal concentration mixing of PBMCs from eight human donors A-H
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Cell hashing with barcoded antibodies

Validation by comparison to Demuxlet

e Using genetic variations (SNPs) to
determine the sources of cells
(individuals)
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Genotype classification (demuxlet)
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H
Negative
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Cell hashing with barcoded antibodies

Commercialized by BioLegend (TotalSeg™)

e« Human: hashtags are made of two antibodies, CD298 and 32
microglobulin
o« Mouse: hashtags are made of two antibodies, CD45 and H-2 MHC class |

N // K BioLegend®

Enabling Legendary Discovery™

5 (PCRHandle .\Aé@‘&‘fggf‘é@a‘ AAAAAAAAAAAAAAAAA (+A,,) 3'

Ny’ '_[ \ Compatible

PRODUCTS

15 bp Barcode 3’ Flanking Sequence ‘I O
| /\

GENOMICS

TotalSeq™-A (4-digit code)
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REAP-seq

BRIEF COMMUNICATIONS

biotechnology

Multiplexed quantification
of proteins and transcripts
in single cells

Vanessa M Peterson', Kelvin Xi Zhang?>,

Namit Kumar', Jerelyn Wong?, Lixia Li', Douglas
C Wilson?, Renee Moore?, Terrill K McClanahan®,
Svetlana Sadekova® & Joel A Klappenbach!

‘We present a tool to measure gene and protein
expression levels in single cells with DNA-labeled
antibedies and droplet microfluidics. Using the RNA
expression and protein sequencing assay (REAP-seq),
we quantified proteins with 82 barcoded antibodies

and =20,000 genes in a single workflow. We used
REAP-seq to assess the costimulatory effects of a CD27
agonist on human CD8* lymphocytes and to identify and
characterize an unknown cell type.

Fecent increasesin the throughput of single-cell (sc) RNA-seq' experi-
mentation has enabled its wse in the identification and characteriza-
tion of novel or rare cell types®, in addition to providing insights into
the underlying mechanisms of cellular development! and the response
to therapeutic interventions®. However, proteins, not mRMAs, are the
primary targets of drugs, and protein abundance cannot necessarily
be inferred directly from mENA sbundance®#. An unbiased view of
proteins is thus necessary to model cellular dynamics and response to
environmental and therapeutic perturbations.

REAP-seq enables simultaneous measurement of proteins and
mBNAs in single cells. Cells are labeled via methods similar to stan-
dard flow cytometry methods but with antibodies conjugated to
DNA barcodes instead of fluorophores. This removes the limitations
imposed by spectral overlap of fluorescent labels (-17) (ref. 10) or the
available number of stable isotopes (—40) (ref. 11), in flow and mass
cytometry. Using sequencing as a readout instead of gPCR'2, a DNA
barcode of eight nucleotides provides up to 65,536 unique indices (B®,
where B=any of the four bases GATC, and i = length of the nucleotide
sequence). In addition to the unique 8-bp barcode, the antibody DNA
label consists of a poly (dA) sequence for pnmmg to the cell barcode

the standard 10x Genomics single-cell (sc)RNA-seq platform?, which
is a droplet-based systemn designed for 37 digital counting of mENA in
thousands of single cells.

REAP-seq leverages the DNA polymerase activity of the reverse tran-
scriptase to simultaneously extend the primed ABE with the poly(dT)
cell barcode and synthesize complementary DNA from mRNA in the
same reaction. Exonudease | is then used to degrade any excess unbound
single-stranded oligonuclectides from the protein double-stranded (ds)
DINA (-155 bp) products to prevent crosstalk between AbEs and cell
‘barcodes from different cells { Supplementary Fig. 4). Dextran sulfate
was added to AbB kabeling buffer to reduce non-specific binding of nega-
tively charged DNA barcodes to the cell surface and isotype controls
(Mouse IgG1, Mouse IgG2a, Mouse IgGb, Rat IgG1, Rat lgi32a) were
used to determine the threshold of background noise (Supplementary
Figs. 5 and 6).

Toinitially test REAP-seq, we stained peripheral blood mononuclear
cells (PEMCs) with a mixture of 45 AbEs (Fig. 1 and Supplementary
Tables 1 and 2) and then magnetically enriched for three popula-
tions of cells: CD3* T cells, CIM1b* myeloid cells, and CD19* B cells
(Supplementary Fig. 7). Cell barcodes identified in both gene and
protein expression matrices were filtered for cells with a mitochon-
drial read rate of <20% and 250 genes expressed (3,797 CD3*, 1,883
CD11ib*, 1,533 CD19* cells, and 7,271 PEMCs). We used the nonlin-
ear dimensionality reduction method *t-distributed stochastic neigh-
‘bor embedding’ (t-SNE) to visualize the principal component analysis
(PCA)-reduced data set in two-dimensional space'® where the cells
were cobor-coded by cluster (Fig. 1a and Supplementary Fig. 7a). The
cells were also colored by the magnetic beads used for isolation (CD3*,
CD19*, CD11b*) (Supplementary Fig. 7b), which showed three eas-
ily discernible purified populations of cells, and was used as a posi-
tive control to assess the sensitivity and specificity of REAP-seq mRNA
and protein measurements for canonical markers of these cell types
(Supplementary Fig. 7c). Also as a control, scRNA-seq alone was run
on PEMCs to ensure the protein assay has no effect on mRENA measure-
ments (Supplementary Figs. 8 and 9).

Protein and mRNA expression of canonical markers for monocytes
(CD11k, CDI4, CD33), B cells (CD20, CD19), T cells (CD3, CD4, CD8),
and natural killer (NK) cells (CD56, CD158el) were projected on the
mBENA t-SNE plot to visualize expression across all PEMCs, and to assess
the specificity and sensitivity of the protein and mBNA assays {Fig. Ub).
For each marker, the Pearson correlation coefficient between mRNA and
protein expression was calculated. The markers most highly correlated
were HLA-DR (R = 0.69), CD20 (R = 0.46), and CD4 (R = 0.51), and
tlbese markers also had the highest levels of transcriptional expression

and a universal sequence for amplification v Figs. 1-3
and Supplemientary Discussion). Excess unbound antibody barcodes
( AbBs) are washed from the labeled cells before they are processed using

4 tary Table 3. For CD4, the correlation between mRNA and
pmm was low, and we found it expressed both in monocytes and T
cells, a finding we confirmed by flow cytometry, ruling out non-specific
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CITE-seq

Simultaneous epitope
and transcriptome
measurement in single
cells

Marlon Stoeckius'©, Christoph Hafemeister' @,
William Stephenson!®, Brian Houck-Loomis!®,
Pratip K Chattopadhyay®®, Harold Swerdlow',
Rahul Satija! 3@ & Peter Smibert!®

High-throughput single-cell RNA saquencing has transformed
our understanding of complex cell populations, but it does not
provide phenotypic information such as cell-surface protein
levels. Here, we describe cellular indexing of transcriptomes
and epitopes by sequencing (CITE-seq), a method in which
oligonucleotide-labelad antiboadies are used to intagrats
cellular protein and transcriptome measurements into an
efficient, single-cell readout. CITE-seq is compatible with
existing single-cell sequencing approaches and scales readily
‘with throughput increases.

The unbiased and high-throughput nature of modern single-
cell RMA-seq (scRNA-seq) approaches has proven invaluable for
describing heterogeneous cell populations'-3. Prior to single-cell
genomics, cellular states were routinely described using curated
panels of flucrescently labeled antibodies directed at cell-surface
proteins, which are often reliable indicators of cellular activity and
function®. Recent studies™ have demonstrated the potential for
coupling ‘index-sorting’ measurements from a cell sorter with
single-cell transcriptomics; this process allows immunophenotypes
to be mapped onto transcriptomically derived clusters. However,
massively parallel approaches based on droplet microfluidics!-2,
microwells™* or combinatorial indexing®'? are incompatible with
cytometry and therefore cannot be augmented with protein infor-
mation. Targeted methods to simultaneously measure transcripts
and proteins in single cells are limited in scale or can only profile a
few genes and proteins in parallel'*-*% (Supplementary Table 1).

Here, we describe CITE-seq, a method that combines highly
multiplexed protein marker detection with unbiased transcriptome
profiling for thousands of single cells. We demonstrate that the
method is readily adaptable to two high-throughput scRMNA-zeq
applications and show that multimodal data analysis can achieve
a more detailed characterization of cellular phenotypes than
transcriptome measurements alone.

BRIEF COMMUNICATIONS |

We devised a digital, sequencing-based readout for protein
levels by conjugating antibodies to oligonucleotides (oligns) that
can be captured by oligo-dT primers (used in most scRNA-seq
library preparations), contain a barcode for antibody identifi-
cation and include a handle for PCR amplification (see Online
Methods). A commonly used streptavidin - biotin interaction links
the 5 end of oligos to antibodies, and a disulfide bond allows the
olign to be released in reducing conditions (Fig. la and
Supplementary Fig, la). The antibody-olige complexes are incu-
bated with single-cell suspensions in conditions comparable to
flow cytometry staining protocols; after this incubation, cells are
washed to remove unbound antibodies and processed for scRNA-
seq. In our example, we encapsulated single cells into nanoliter-
sized aqueous droplets in a microfluidic apparatus designed to
perform Drop-seq' (Supplementary Fig. 1b). After cell lysis in
droplets, cellular mRNAs and antibody-derived oligos both anneal
via their 3 polyA tails to Drop-seq beads containing oligo-dT
(Supplementary Fig. 1b.c} and are indexed by a shared cellular bar-
code during reverse transcription. The amplified cDMAs and anti-
body-derived tags (ADTs) can be separated by size and converted
into Ilumina-sequencing libraries independently (Supplementary
Fig. 1d}. Importantly, because the twao library types are generated
separately, their relative proportions can be adjusted in a pooled
single lane to ensure that the required sequencing depth is obtained
for each library.

To assess our method's ability to distinguish single cells based
on surface protein expression, we designed a proof-of-principle
‘species-mixing’ experiment that leverages the species-specific
and highly expressed marker CD29 {Integrin beta-1). A suspension
of human (HeLa) and mouse (4T1) cells was incubated with
a mixture of DNA-barcoded anti-mouse and anti-human
€029 antibodies. After washing to remove unbound antibod-
ies, we performed Drop-seq' to investigate the concordance
between species of origin of the transcripts and ADTs (Fig. 1
and Supplementary Fig, 2a,b). We deliberately used a high
cell concentration to obtain high rates of multiplets (droplets
containing two or more cells) to correlate mixed -species tran-
scriptome data with mixed-species ADT signals from indi-
vidual droplets. Most droplets (97.2%) that were identified
as containing human, mouse or mixed cells by transcriptome
(Fig. 1b) received the same species classification by ADT
counts (Fig. 1c). Cell counts based on RNA or ADT are highly
correlated between both methods (Supplementary Fig. 2b).
and this demonstrates the low dropout rate of ADT signals. We
performed the same experiment using a commercially available
system from 10x Genomics and obtained comparable results
(Supplementary Fig. 2c-f).

‘Wi sought to characterize the quantitative nature of the CITE-
seq protein readout. Flow cytometry is the gold standard for
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REAP-seq

RNA expression and protein sequencing assay
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CITE-seq

Cellular Indexing of Transcriptomes and Epitopes by Sequencing
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CITE-seq

Cellular Indexing of Transcriptomes and Epitopes by Sequencing
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Single cell Multi-omics

Same cell
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Gupta

Single cell isoform RNA sequencing
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Multi-omics factor analysis
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Ssummary

Batch effects sometimes not avoidable

Many batch correction/integration methods available, mainly using joint dimension
reduction, or joint clustering, or a combination of both

* Performance assessment is challenging

Sample multiplexing can help alleviate batch effects

Simultaneous mRNA and protein profiling: REAP-seq and CITE-seq

Several single cell multi-omics technologies



Data integration practical

* MNN correction
e Seurat v3

e Four pancreatic datasets



Resources

| o

e Stuart et al. “Comprehensive integration of single cell data”
https://www.biorxiv.org/content/10.1101/460147v1

. Ha_gfp]vberdi”et al. “Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest
neighbors

https://doi.org/10.1038/nbt.4091
e Tim Stuart “Integration and harmonization of single-cell data” (Satija Lab single cell genomics day 2019)
https://satijalab.org/sced/

* Andrew Butler “Batch Correction and Data Integration for Single Cell Transcriptomics” (Satija Lab single cell
genomics day 2018)

https://satijalab.org/scgd18/
* Orchestrating Single-Cell Analysis with Bioconductor

https://osca.bioconductor.org/

 Hemberg’s group course: Analysis of single cell RNA-seq data
https://scrnaseq-course.cog.sanger.ac.uk/website/index.html

e Seurat Integration and Label Transfer tutorial
https://satijalab.org/seurat/v3.0/pancreas integration label transfer.html
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