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Cell Identity
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How can we identify cell populations?
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Kiselev et al. (https://doi.org/10.1038/s41576-018-0088-9)
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Kiselev et al. (https://doi.org/10.1038/s41576-018-0088-9)
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Feature selection

• Curse of dimensionality:

More features (genes) -> smaller distances 
between samples (cells)

• Remove genes which only exhibit 
technical noise
• Increase the signal:noise ratio 

• Reduce the computational complexity

Kiselev et al. (https://doi.org/10.1038/s41576-018-0088-9)
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Feature selection
Highly Variable Genes (HVG)

• 𝐶𝑉 =
𝑣𝑎𝑟

𝑚𝑒𝑎𝑛
=

𝜎

𝜇

• Fit a gamma generalized linear 
model

• No ERCCs? 
-> estimate technical noise based on 
all genes

Brennecke et al. (https://doi.org/10.1038/nmeth.2645)

ERCCs
HVGs

Technical noise
50% biological variation
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Feature selection
M3Drop: Dropout-based feature selection

• Reverse transcription is an enzyme 
reaction thus can be modelled using 
the Michaelis-Menten equation: 

S: average expression

KM: Michaelis-Menten constant

Brennecke et al. (https://doi.org/10.1038/nmeth.2645)
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Selecting principal components

• To overcome the extensive technical 
noise in scRNA-seq data, it is common 
to cluster cells based on their PCA 
scores

• Each PC represents a ‘metagene’ that 
(linearly) combines information across 
a correlated gene set
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Many clustering approaches
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Mean shift clustering
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Many clustering approaches
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Clustering
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Clustering

• Structure when:

1) Samples within cluster resemble each 
other (within variance, σW(i))

2) Clusters deviate from each other 
(between variance, σB)

• Group samples such that:

e1

e2 σw(i)

σB
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Hierarchical clustering
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Find most similar objects (genes) and group them



Hierarchical clustering

Dim1

D
im
2

4 2 3 7 5 8 1 6

4
2

7

3

5
8

1
6

16

dendrogram

Height = distance between objects

These are: objects 4 and 2
Again, find most similar objects (genes or clusters) and group them

C1



C1
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Hierarchical clustering

Dim1

D
im
2

4 2 3 7 5 8 1 6

4
2

7

3

5
8

1
6

17

dendrogram

These are: objects 5 and 8
Repeat finding most similar objects (genes or clusters) and grouping them
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Hierarchical clustering
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dendrogram

Join object 3 and cluster 1
Repeat process
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Hierarchical clustering
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dendrogram

Join [object 7 and cluster 1] -> [cluster 1]
Repeat process
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Hierarchical clustering
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dendrogram

Join [object 1 and cluster 2] -> [cluster 2]
Repeat process
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Hierarchical clustering
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dendrogram

Join [object 6 and cluster 2] -> [cluster 2]
Repeat process



Hierarchical clustering
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Dim1

D
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Join [cluster 1 and cluster 2] -> [cluster 1]
All in one cluster: FINISHED!



Hierarchical clustering
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Hierarchical clustering

Need to know:
• Similarity between objects

• Similarity between clusters
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data ordered on similarity
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Hierarchical clustering
Similarity between clusters
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Hierarchical clustering
Similarity between clusters

SL

CL

AL

• Single linkage: Closest objects
• Complete linkage: Furthest objects
• Average linkage: Average dissimilarity
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Hierarchical clustering
Similarity between clusters

27

complete linkage

single linkage



Hierarchical clustering
Similarity between clusters
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complete linkage

single linkage

Shortest complete 
linkage distance



Hierarchical clustering
Similarity between clusters
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complete linkage

single linkage

Shortest single 
linkage distance



Hierarchical clustering
Similarity between clusters

• Single linkage -> long and “loose” clusters

• Complete linkage -> compact clusters

complete linkage

single linkage
30



Hierarchical clustering
Similarity between objects

g

e1 e2 eN

Euclidean
distance

Mixed Pearson 
correlation

Pearson 
correlation

d(  ,  ) ≈ d(  ,  )

d(  ,  ) ≈ d(  ,  )
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31Match exact shape Ignore amplitude Ignore amplitude and sign



k-Means clustering

Choose randomly 2 prototypes
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k-Means clustering

Assign objects to closest prototype
Blue area: cluster 1
White area: cluster 2
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k-Means clustering

Calculate new cluster prototypes
By averaging objects
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k-Means clustering

Re-assign objects to closest prototype
Blue area: cluster 1
White area: cluster 2
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k-Means clustering

Re-calculate new cluster prototypes
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k-Means clustering

Re-assign objects to closest prototype
If no objects change cluster then finished
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k-Means clustering

Establish clusters
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•World contains more than circles

•May take forever to converge

•Need to specify K
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Limitations of k-Means



Graph-based clustering

40

Nodes -> cells
Edges -> similarity



Graph Types

• k-Nearest Neighbor (kNN) graph

A graph in which two vertices p and q are connected by an edge, if the 
distance between p and q is among the k-th smallest distances from p to 
other objects from P.

• Shared Nearest Neighbor (SNN) graph 

A graph in which weights define proximity, or similarity between two 
nodes in terms of the number of neighbors (i.e., directly connected 
nodes) they have in common.

41



Graphs, adjacency and weight matrices
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Graph clustering (Community detection)

• Communities (clusters): groups of nodes 
with higher probability of being 
connected to each other than to 
members of other groups

• Community detection: find a group 
(community) of nodes with more edges 
inside the group than edges linking nodes 
of the group with the rest of the graph.
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Graph cuts

• Graph cut partitions a graph into 
subgraphs

• Cut size is the number of cut edges

• Clustering by graph cuts: find the 
smallest cut that bi-partitions the graph

• The smallest cut is not always the best 
cut

44



Normalized cut

• The following way provides a good measure for the quality of a cut:
• Denote 𝑣𝑜𝑙(𝑆) the number of nodes in (sub)graph 𝑆

• Denote 𝑐𝑢𝑡(𝑆, 𝑇) the number of edges that connects nodes in 𝑆 with those in 
𝑇

• The normalized cut value is:

𝑁𝑐𝑢𝑡 𝑆, 𝑇 =
𝑐𝑢𝑡(𝑆, 𝑇)

𝑣𝑜𝑙(𝑆)
+
𝑐𝑢𝑡(𝑆, 𝑇)

𝑣𝑜𝑙(𝑇)

• The normalized cut dislikes cuts that generate very small subgraphs

Shi & Malik (IEEE PAMI 2000)
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Normalized cut (example)

• cut(S,T) = 0.1 + 0.2 = 0.3

• vol(S)= 0.3 + 0.6 + 0.8 + 0.8 = 2.5

• vol(T)= 0.3 + 0.8 + 0.8 + 0.6 = 2.5 

• Ncut(S,T) = 0.3/2.5 + 0.3/2.5 = 0.24

• cut(S,T) = 0.8 + 0.6 + 0.8 + 0.8 = 3.0

• vol(S) = 3.0 + 0.1 = 3.1

• vol(T) = 3.0 + 0.8 + 0.2 + 0.6 = 4.6

• Ncut(S,T) = 3.0/3.1 + 3.0/4.6 = 1.62
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Normalized cut

• Searching for the best normalized cut is NP-hard

• We need a heuristic method to solve the problem:
• Spectral clustering

• Louvain 

• Markov clustering

• …

47



scRNA-seq clustering methods

Kiselev et al. (https://doi.org/10.1038/s41576-018-0088-9)
48

https://doi.org/10.1038/s41576-018-0088-9


scRNA-seq clustering methods

https://www.scrna-tools.org/
49

https://www.scrna-tools.org/


Single Cell Consensus Clustering – SC3

Kiselev et al. (https://doi.org/10.1038/nmeth.4236)

1 2 3 4 5
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Single Cell Consensus Clustering – SC3

1) Gene filtering – rare and ubiquitous genes

2) Distance matrices (DM) – Euclidean, Spearman, Pearson

3) Transformation of DM with PCA or Laplacian

4) K-means clustering with first d eigenvectors

5) Consensus clustering – distance 1/0 for cells in same/different clusters -> 
hierarchical clustering on average distances.
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Seurat

1) Construct KNN (k-nearest neighbor) graph 
based on the Euclidean distance in PCA 
space.

2) Refine the edge weights between any two 
cells based on the shared overlap in their 
local neighborhoods (Jaccard distance).

3) Cluster cells by optimizing for modularity 
(Louvain algorithm)

K = 5

K = 10

K = 10 
+ Jaccard

Xu and Su (https://doi.org/10.1093/bioinformatics/btv088)
Levine et al. (https://doi.org/10.1016/j.cell.2015.05.047)
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Comparing different clusterings

• Adjusted Rand Index (ARI)

Given a set 𝑆 of 𝑛 elements, and two groupings or partitions (e.g. clusterings) of 
these elements 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑟} and 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑟}

Confusion matrix/contingency table

𝑛𝑖𝑗 = 𝑋𝑖 ∩ 𝑌𝑗 53



Benchmarking scRNA-seq clustering methods

54
Duò et al. (https://doi.org/10.12688/f1000research.15666.2)
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Benchmarking scRNA-seq clustering methods

Duò et al. (https://doi.org/10.12688/f1000research.15666.2)
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•Principle choices
• Similarity measure
• Algorithm 

•Different choice leads to different 
results
• Subjectivity becomes reality

•Cluster process
• Validate, interpret (generate hypothesis), 

repeat steps
56

Clustering is subjective!



How many clusters do you really have?

• It is hard to know when to stop clustering – you can always split the 
cells more times.

• Can use:
• Do you get any/many significant DE genes from the next split?

• Some tools have automated predictions for number of clusters – may not 
always be biologically relevant

57



Bootstrapping

• How confident can you be that the clusters 
you see are real?

• You can always take a random set of cells 
from the same cell type and manage to 
split them into clusters.

Rosvall and Bergstrom (https://doi.org/10.1371/journal.pone.0008694)
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Always check QC data

• Is what your splitting mainly 
related to batches, qc-measures 
(especially detected genes)?

59



From clusters to cell identities 

• Using lists of DE genes and prior knowledge of the biology

• Using lists of DE genes and comparing to other scRNAseq data or 
sorted cell populations

60



Databases with celltype gene signatures

• PanglaoDB (https://panglaodb.se/)
• Human: 295 samples, 72 tissues, 1.1 M cells

• Mouse: 976 samples, 173 tissues, 4 M cells

• Franzén et al (https://doi.org/10.1093/database/baz046)

• CellMarker (http://biocc.hrbmu.edu.cn/CellMarker/)
• Human: 13,605 cell markers of 467cell types in 158 tissues

• Mouse: 9,148 cell makers of 389 cell types in 81 tissues

• Zhang et al. (https://doi.org/10.1093/nar/gky900)
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Challenges in clustering

• What is a cell type?

• What is the number of clusters k?

• Scalability: in the last few years the number of cells in scRNA-seq 
experiments has grown by several orders of magnitude from ~102 to 
~106
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Cell identity

Wagner et al. (https://doi.org/10.1038/nbt.3711)
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Summary
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Clustering practical

• Feature selection (HVG)

• Dimensionality reduction: select principal components

• Hierarchical clustering: distances and linkage methods

• tSNE + k-Means

• Graph-based clustering
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Resources

• Kiselev et al. ”Challenges in unsupervised clustering of single- cell RNA- seq data”

https://doi.org/10.1038/s41576-018-0088-9

• Duò et al. ” A systematic performance evaluation of clustering methods for single-cell RNA-seq data”

https://doi.org/10.12688/f1000research.15666.2

• Orchestrating Single-Cell Analysis with Bioconductor

https://osca.bioconductor.org/

• Hemberg single cell course: Analysis of single cell RNA-seq data

https://scrnaseq-course.cog.sanger.ac.uk/website/index.html

• Slides Åsa Björklund (NBIS, SciLifeLab)

https://github.com/NBISweden/workshop-scRNAseq/tree/master/slides2019
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