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Cell Identity

Environmental stimuli Cell development

Wagner et al. (https://doi.org/10.1038/nbt.3711)

Cell cycle

Spatial context



https://doi.org/10.1038/nbt.3711

How can we identify cell populations?
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Quality control Normalization Feature selection
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Kiselev et al. (https://doi.org/10.1038/s41576-018-0088-9)
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Quality control Normalization Feature selection
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Outline

 Feature selection

* Introduction to clustering
* Hierarchical clustering
* k-Means clustering
* Graph-based clustering

* sScRNA-seq clustering
 Single Cell Consensus Clustering (SC3)
* Seurat

e Validation



Feature selection

* Curse of dimensionality: o
More features (genes) -> smaller distances N
between samples (cells) 0 b
 Remove genes which only exhibit
technical noise £
. . . )
* Increase the signal:noise ratio
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* Reduce the computational complexity

Cell label

* Zygote
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Feature selection
Highly Variable Genes (HVG)

var

CV =

=19

mean

* Fit a gamma generalized linear
model

e No ERCCs?
-> estimate technical noise based on
all genes

Brennecke et al. (https://doi.org/10.1038/nmeth.2645)
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8


https://doi.org/10.1038/nmeth.2645

Feature selection

M3Drop: Dropout-based feature selection

* Reverse transcription is an enzyme
reaction thus can be modelled using
the Michaelis-Menten equation:

S
Proouzl_
dropout KM—l—S

S: average expression

Ky,: Michaelis-Menten constant

Brennecke et al. (https://doi.org/10.1038/nmeth.2645)
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Selecting principal components

* To overcome the extensive technical
noise in scCRNA-seq data, it is common
to cluster cells based on their PCA
scores

* Each PC represents a ‘metagene’ that
(linearly) combines information across
a correlated gene set

Scree/Elbow plot
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Many clustering approaches
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Many clustering approaches
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Clustering




Clustering

e Structure when:

1) Samples within cluster resemble each
other (within variance, o,(i))

2) Clusters deviate from each other
(between variance, o)

e Group samples such that:

/ EOW(I.)\

Y clusters — ow: small &
og: large

min
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Hierarchical clustering

Dim2

Dim1

Find most similar objects (genes) and group them



Hierarchical clustering

dendrogram
3¢ .
> 7 Height = distance between objects
a) "o o8
o
6® '
4 2 3 7 5 8 1 6
Dim1

These are: objects 4 and 2
Again, find most similar objects (genes or clusters) and group them



Hierarchical clustering

dendrogram

O

Dim1

These are: objects 5 and 8
Repeat finding most similar objects (genes or clusters) and grouping them



Hierarchical clustering

dendrogram

O

Dim1

Join object 3 and cluster 1
Repeat process



Hierarchical clustering

dendrogram

Dim1

Join [object 7 and cluster 1] -> [cluster 1]
Repeat process



Hierarchical clustering

dendrogram

Y0,

Dim1

Join [object 1 and cluster 2] -> [cluster 2]
Repeat process




Hierarchical clustering

dendrogram
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Dim1

Dim2

Join [object 6 and cluster 2] -> [cluster 2]
Repeat process




Hierarchical clustering

dendrogram

Dim2

Dim1 M

Join [cluster 1 and cluster 2] -> [cluster 1] data ordered on similarity

All in one cluster: FINISHED!

22



Hierarchical clustering

dendrogram

Dim2

Dim1 M

data ordered on similarity
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Hierarchical clustering

Need to know:
e Similarity between objects
e Similarity between clusters

dendrogram

Dim2

Dim1 data ordered on similarity



Hierarchical clustering
Similarity between clusters



Hierarchical clustering

Similarity between clusters

AN

e

CL

e Single linkage: Closest objects
e Complete linkage: Furthest objects
e Average linkage: Average dissimilarity



Hierarchical clustering

Similarity between clusters

s

D complete linkage
[]

single linkage



Hierarchical clustering

Similarity between clusters

Shortest complete
linkage distance

D complete linkage
D single linkage

28



Hierarchical clustering

Similarity between clusters

4 Shortest single
linkage distance

D complete linkage
D single linkage
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Hierarchical clustering

Similarity between clusters

e Single linkage -> long and “loose” clusters
 Complete linkage -> compact clusters

D complete linkage
[]

single linkage



Euclidean

distance

d(gi,95) = V(D _((2; — 2))%)

d(®,0) < d(e,)
d(@,0) << d(e,@)
d(®,0) << d(e,®)

Match exact shape

Hierarchical clustering

Similarity between objects

Pearson
correlation

1 — pij

d(@0) = d(e,)
d(@,0) << d(e,@)
d(®,0) << d(e,®)

lgnore amplitude

Mixed Pearson
correlation

I - |:0@'j|

d@, )
d(®,0)

d(@,0) =
d(@,0) =
d(@,0) << d(®,0)

lgnore amplitude and sign



k-Means clustering

Choose randomly 2 prototypes



k-Means clustering

Assign objects to closest prototype
Blue area: cluster 1
White area: cluster 2



k-Means clustering

Calculate new cluster prototypes
By averaging objects



k-Means clustering

Re-assign objects to closest prototype
Blue area: cluster 1
White area: cluster 2



k-Means clustering
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Re-calculate new cluster prototypes



k-Means clustering

Re-assign objects to closest prototype
If no objects change cluster then finished



k-Means clustering

Establish clusters



Limitations of k-Means

* \World contains more than circles
* May take forever to converge

* Need to specify K

39



Graph-based clustering

an - - -

gl e Cluster 3
Nodes -> cells

Edges -> similarity

Cluster 1 Cluster 2 S, -
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\§___-/

Cluster 4
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Graph Types

 k-Nearest Neighbor (kNN) graph

A graph in which two vertices p and g are connected by an edge, if the
distance between p and g is among the k-th smallest distances from p to
other objects from P

 Shared Nearest Neighbor (SNN) graph

A graph in which weights define proximity, or similarity between two
nodes in terms of the number of neighbors (i.e., directly connected
nodes) they have in common.



Graphs, adjacency and weight matrices
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Graph clustering (Community detection)

* Communities (clusters): groups of nodes
with higher probability of being
connected to each other than to
members of other groups

 Community detection: find a group
(community) of nodes with more edges
inside the group than edges linking nodes
of the group with the rest of the graph.

oO

170 S0

Q O-O
OOO
Q90
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Graph cuts

* Graph cut partitions a graph into
subgraphs

* Cut size is the number of cut edges

 Clustering by graph cuts: find the
smallest cut that bi-partitions the graph

* The smallest cut is not always the best
cut

Smallest
cut

Best cut

44



Normalized cut

* The following way provides a good measure for the quality of a cut:
* Denote vol(S) the number of nodes in (sub)graph S

* Denote cut(S,T) the number of edges that connects nodes in S with those in
T

* The normalized cut value is:
cut(S,T) cut(S,T)
Ncut(S,T) =
cut(S,T) vol(S) T vol(T)

 The normalized cut dislikes cuts that generate very small subgraphs

Shi & Malik (IEEE PAMI 2000)



Normalized cut (example)

e cut(S,T)=0.1+0.2=0.3

* vol(S)=0.3+0.6+0.8+0.8=2.5
 vol(T)=0.3+0.8+0.8+0.6=2.5
* Ncut(S,T) =0.3/2.5+0.3/2.5=0.24

e cut(S,T)=0.8+0.6+0.8+0.8=3.0
e vol(S)=3.0+0.1=3.1
*vol(T)=3.0+0.8+0.2+0.6=4.6
e Ncut(S,T) =3.0/3.1 +3.0/4.6 =1.62




Normalized cut

e Searching for the best normalized cut is NP-hard

* We need a heuristic method to solve the problem:
e Spectral clustering
* Louvain
* Markov clustering



scRNA-seq clustering methods

Name

scanpy’
Seurat (latest)?
PhenoGraph?
SE3 (REEX)

SIMLR*

CIDR#
GiniClust™
pcaReduce’’
Tasicetal.”®
TSCAN*

mpath*
BackSPIN?
RacelD?*, RacelD2

(REF'**), RacelD3
SINCERA?®

SNN-Clig®*

Year
2018
2016
2015
2017

2017

2017

2016

2016

2016

2016

2016

2015

2015

2015

2015

Method type
PCA +graph-based

PCA + k-means

Data-driven dimensionality
reduction+k-means

PCA + hierarchical

DBSCAN

PCA +k-means + hierarchical
PCA + hierarchical
PCA + Gaussian mixture model
Hierarchical

Biclustering (hierarchical)
k-Means

Hierarchical

Graph-based

Strengths

Very scalable

High accuracy through consensus,
provides estimation of k

Concurrent training of the distance
metric improves sensitivity in noisy
data sets

Implicitly imputes dropouts when
calculating distances

Sensitive to rare cell types
Provides hierarchy of solutions

Cross validation used to perform
fuzzy clustering

Combines clustering and
pseudotime analysis

Combines clustering and
pseudotime analysis

Multiple rounds of feature selection
improve clustering resolution

Detects rare cell types, provides
estimation of k

Method is intuitively easy to
understand

Provides estimation of k

Kiselev et al. (https://doi.org/10.1038/s41576-018-0088-9)

Limitations

May not be accurate for small data sets

High complexity, not scalable

Adjusting the distance metric to make
cells fit the clusters may artificially
inflate quality measures

Not effective for the detection of large
clusters

Very stochastic, does not provide a
stable result

High complexity, no software package
available

Assumes clusters follow multivariate
normal distribution

Uses empirically defined thresholds
and a priori knowledge

Tends to over-partition the data

Performs poorly when there are no rare
cell types

Simple hierarchical clustering is used,
may not be appropriate for very noisy
data

High complexity, not scalable

48
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scRNA-seq clustering methods

https://www.scrna-tools.org/

Category: Clustering
Percent: 28

Count: 118

40.0% 1
30.0% A
20.0% A
10.0% 1

0.0%

S|003 Jo abejuadiad
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Single Cell Consensus Clustering — SC3

a Input Gene Filter Distances Transformations d range k-means Consensus

Euclidean PCA _ -
Pearson Spectral N Cells
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Kiselev et al. (https://doi.org/10.1038/nmeth.4236)
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Single Cell Consensus Clustering — SC3

1) Gene filtering — rare and ubiquitous genes

2) Distance matrices (DM) — Euclidean, Spearman, Pearson
3) Transformation of DM with PCA or Laplacian

4) K-means clustering with first d eigenvectors

5) Consensus clustering — distance 1/0 for cells in same/different clusters ->
hierarchical clustering on average distances.



Seurat

1) Construct KNN (k-nearest neighbor) graph
based on the Euclidean distance in PCA
space.

2) Refine the edge weights between any two
cells based on the shared overlap in their
local neighborhoods (Jaccard distance).

3) Cluster cells by optimizing for modularity
(Louvain algorithm)

Xu and Su (https://doi.org/10.1093/bioinformatics/btv088)
Levine et al. (https://doi.org/10.1016/j.cell.2015.05.047)

K=10
+ Jaccard

52
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Comparing different clusterings

* Adjusted Rand Index (ARI)

Given a set S of n elements, and two groupings or partitions (e.g. clusterings) of
these elements X = {X1,X5, ..., X,-}andY ={V},Y,, ..., Y,.}

Confusion matrix/contingency table

}- 1

XN Y I3 ... ¥ |Oums Index Expected Index

X, n N ... Ty, @) Adjusted Index —— . . ! ;
LRSI e S -EO,0U6

o | f - b - i in
32 (3) + X5 ()1 - 15 (5) X, (3)/ ()

Xr , N1 Tr2 rer Mys , fr S ir:n e Expect ::l Index
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Benchmarking scRNA-seq clustering methods
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Duo et al. (https://doi.org/10.12688/f1000research.15666.2)
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Benchmarking scRNA-seq clustering methods
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Clustering is subjective!

* Principle choices
 Similarity measure
e Algorithm

e Different choice leads to different
results
e Subjectivity becomes reality

* Cluster process

* alidate, interpret (generate hypothesis),
repeat steps

56



How many clusters do you really have?

* |t is hard to know when to stop clustering — you can always split the
cells more times.

* Can use:
* Do you get any/many significant DE genes from the next split?

* Some tools have automated predictions for number of clusters — may not
always be biologically relevant



Bootstrapping

* How confident can you be that the clusters
you see are real?

* You can always take a random set of cells

from the same cell type and manage to
split them into clusters.

Rosvall and Bergstrom (https://doi.org/10.1371/journal.pone.0008694)

Real world Bootstrap world

Resampling

Clustering Clustering
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Always check QC data
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From clusters to cell identities

e Using lists of DE genes and prior knowledge of the biology

* Using lists of DE genes and comparing to other scRNAseq data or
sorted cell populations



Databases with celltype gene signatures

* PanglaoDB (https://panglaodb.se/)
* Human: 295 samples, 72 tissues, 1.1 M cells

* Mouse: 976 samples, 173 tissues, 4 M cells
* Franzén et al (https://doi.org/10.1093/database/baz046)

e CellMarker (http://biocc.hrbmu.edu.cn/CellMarker/)
* Human: 13,605 cell markers of 467cell types in 158 tissues
* Mouse: 9,148 cell makers of 389 cell types in 81 tissues
e Zhang et al. (https://doi.org/10.1093/nar/gky900)
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Challenges in clustering

* What is a cell type?
 \What is the number of clusters k?

* Scalability: in the last few years the number of cells in scRNA-seq
experiments has grown by several orders of magnitude from ~10? to
~10°



Cell identity

Environmental stimuli Cell development

Wagner et al. (https://doi.org/10.1038/nbt.3711)

Cell cycle

Spatial context
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Summary

Quality control

Normalization

Feature selection
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Clustering practical

e Feature selection (HVG)

* Dimensionality reduction: select principal components
* Hierarchical clustering: distances and linkage methods
* tSNE + k-Means

* Graph-based clustering



Resources

e Kiselev et al. “Challenges in unsupervised clustering of single- cell RNA- seq data”

https://doi.org/10.1038/s41576-018-0088-9

* Duo et al.” A systematic performance evaluation of clustering methods for single-cell RNA-seq data”
https://doi.org/10.12688/f1000research.15666.2

e Orchestrating Single-Cell Analysis with Bioconductor

https://osca.bioconductor.org/

 Hemberg single cell course: Analysis of single cell RNA-seq data
https://scrnaseq-course.cog.sanger.ac.uk/website/index.html

« Slides Asa Bjorklund (NBIS, SciLifelab)
https://github.com/NBISweden/workshop-scRNAseq/tree/master/slides2019
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