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Set operations

In R, working with sets is very natural. Let us begin by defining
three sets and plotting Venn diagram of these.

library(venn)
S1 = c(1:5); S2=(4:7); S3=c(7:9)
venn(list(S1=S1, S2=S2, S3=S3))
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Set operations cted.

S1 = 1, 2, 3, 4, 5; S2 = 4, 5, 6, 7;S3 = 7, 8, 9

union(S1, S2) # Union

## [1] 1 2 3 4 5 6 7

intersect(S2, S3) # Intersection

## [1] 7

setdiff(S3, S2) # Difference

## [1] 8 9
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Set operations cted.

S1 = 1, 2, 3, 4, 5; S2 = 4, 5, 6, 7;S3 = 7, 8, 9

setequal(S1, S3) # Equality rel.

## [1] FALSE

is.element(2, S3) # Is element rel.

## [1] FALSE
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Selected math functions – polynomials
To be able to work with polynomials, such as x3 + x2 + 2x + 7, we
need to install and load the polynom package. Once this is
done, let us define two polynomials, the one above
and 3x2 + 5x − 3.

library(polynom)
poly1 <- polynomial(c(7,2,1,1))
poly1

## 7 + 2*x + x^2 + x^3

poly2 <- polynomial(c(-3, 5,3))
poly2

## -3 + 5*x + 3*x^2

Thomas Källman (adopted from slides by M. Kierczak Selected R functions



Polynomials – defining, alternative 2

Polynomials can be also defined in terms of their zeros, i.e. the
points where their value equals zero. Instead of zeros, one can
provide coords of the points the polynomial has to contain.

poly3 <- poly.calc(c(-5,7)) # zeros

# points A(1,-1); B(4,4); C(9,5)
poly.calc(c(1,4,9), c(-1,4,5))

## -3.4 + 2.583333*x - 0.1833333*x^2
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Polynomials – plot

Let us visualize one of the defined polynomials and see whether its
zeros are where they should be. . .

poly3 <- poly.calc(c(-5,7)) # zeros
p <- plot(poly3, bty='n', las=1, cex.axis=.8)

−4 −2 0 2 4 6

−30

−20

−10

0

x

P
x

Thomas Källman (adopted from slides by M. Kierczak Selected R functions



Polynomials – basic operations

Polynomials can be added, subtracted, multiplied and divided using
standard operators:

poly1 + poly2

## 4 + 7*x + 4*x^2 + x^3

poly1 / poly2

## -0.2222222 + 0.3333333*x

Thomas Källman (adopted from slides by M. Kierczak Selected R functions



Polynomials – calculus

We can also compute derivatives and integrals of polynomials:

# integrate on the [-2,2] interval
integral(poly1, c(-2,2))

## [1] 33.33333

deriv(poly2)

## 5 + 6*x
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Polynomials – GCD and LCM

It is also easy to find the Greatest Common Divisor and the Least
Common Multiple of two polynomials:

# integrate on the [-2,2] interval
GCD(poly1, poly3)

## 1

LCM(poly1, poly2)

## -21 + 29*x + 28*x^2 + 8*x^3 + 8*x^4 + 3*x^5
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Math functions

R can also be used to examine functions: find their extrema and
zeros. Say, we want to examine the y = (x − 9)2 − 5x − 2 function.
Let’s define it first:

f <- function(x) {
y <- (x - 9)^2 - 5*x - 2
return(y)

}
f(2) # compute its value at x=2

## [1] 37
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Math functions - zeros
To find zeros of the y = (x − 9)2 − 5x − 2 function we us the
uniroot function. Note, we have to define the
interval on which we are searching.

uniroot(f, lower=-1, upper=10)

## $root
## [1] 4.20274
##
## $f.root
## [1] -1.518598e-06
##
## $iter
## [1] 6
##
## $init.it
## [1] NA
##
## $estim.prec
## [1] 6.730043e-05
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Math functions - plotting

Sure, one can plot a function, such as: y = (x − 9)2 − 5x − 2 or
sin(x).

par(mfrow=c(1,2))
curve(f, from = -1, to=10)
curve(sin, from=-pi, to=pi, col='blue')
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Math formulas in R

In R, one can use the so-called formulas. A formula is a symbolic
representation of a relationship between variables. Typically, on the
left side of a formula, we have one variable, the dependent variable
and on the right side, we have one or more explanatory variables
that are forming an expression. For instance, we can write y ~ x
which means that y depends on x . The former is the dependent
variable while the latter is the independent or explanatory variable.

We can have more independent variables forming an expression,
e.g.: y ~ xˆ2 + 2z + 3b
We also can have interactions between variables: y ~ a + b +
a:b which can also be written as: y ~ a*b
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Math formulas 2

Writing: y ~ (a + b) %in% c is equivalent to: y ~ a:c +
b:c,
Similarly, the division sign y ~ a/b yields y ~ a + a:b,
The minus sign excludes the variable: y ~ a * b - a equals to:
y ~ b + a:b,
To add the constant term, one can write +1, e.g.: y ~ a + b
+ 1,
To remove the constant term, one can use either +0 or -1: y ~
+0 + a + b.

The formulas are very useful when defining linear models and in
calculus.
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Math – calculus

The symbolic calculus is implemented in package stats and
pre-loaded automaticaly when you start R session. Derivation is
implemented in two functions, D() and deriv() that differ in the
form in which they take arguments: the former takes an expression
as argument, the latter a formula with left side undefined. Let us do
some derivation on one of the polynomials we have defined:

poly1

## 7 + 2*x + x^2 + x^3

deriv(poly1, 'x')

## 2 + 2*x + 3*x^2

Thomas Källman (adopted from slides by M. Kierczak Selected R functions



Math – calculus cted.

To do the same using the D() function:

poly1

## 7 + 2*x + x^2 + x^3

p1 <- expression(x^3 +x^2 + 2*x)
deriv.call <- D(p1, 'x')
deriv.call

## 3 * x^2 + 2 * x + 2
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Math – calculus cted.

Let us now evaluate this derivative at points x = 1, ..., 5:

x <- 1:5
eval(deriv.call)

## [1] 7 18 35 58 87
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Math – calculus, integration.

Symbolic integration is a bit more tricky, let’s look at the numerical
integration in R. We are, say, interested in the area under the
N(0, 1) on the −.5, .5 interval:

integrate(dnorm, lower = -.5, upper=.5, mean = 0, sd = 1)

## 0.3829249 with absolute error < 4.3e-15
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Math – calculus, integration, plot

And here is the graphical illustration of the area integrated in the
above example:
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Linear regression – Galton’s Dataset

It was Sir Francis Galton, a British man of Reinassance, who
introduced the term regression. In 1885, he was looking at the
relationship between the height of parents and the height of
children. To his surprise, he has noticed that, on average, children
of higher parents are also higher than average, but shorter than the
mean of their parents. This phenomenon he has termed regression
towards the mean.
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Linear regression – Galton’s Dataset cted.

Package UsingR contains Galton’s original data:

library(UsingR)
data(galton)
dim(galton)

## [1] 928 2

head(galton, n=2)

## child parent
## 1 61.7 70.5
## 2 61.7 68.5
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Galton’s data – plot
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Fitting linear model to Galton’s data

Below, we will try to fit linear model to Galton’s data and do some
model diagnostics in order to see how good it is.

lm.galton <- lm(formula=child~parent, data=galton)

We used standard R lm function. We want to know how child’s
height depends on parents’ height: child parent and we use the
lm function.
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Summary of the model

summary(lm.galton)

##
## Call:
## lm(formula = child ~ parent, data = galton)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.8050 -1.3661 0.0487 1.6339 5.9264
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.94153 2.81088 8.517 <2e-16 ***
## parent 0.64629 0.04114 15.711 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.239 on 926 degrees of freedom
## Multiple R-squared: 0.2105, Adjusted R-squared: 0.2096
## F-statistic: 246.8 on 1 and 926 DF, p-value: < 2.2e-16

Call:
lm(formula = child ~ parent, data = galton)

Residuals:
Min 1Q Median 3Q Max

-7.805 -1.366 0.049 1.634 5.926

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.9415 2.8109 8.52 <2e-16 ***
parent 0.6463 0.0411 15.71 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.24 on 926 degrees of freedom
Multiple R-squared: 0.21, Adjusted R-squared: 0.21
F-statistic: 247 on 1 and 926 DF, p-value: <2e-16
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Summary explained

the distribution of residuals: minimum, maximum, median, the
1st and the 3rd quantile,
the estimation of β parameters. in our case it is β̂0 = 23.94
and β̂1 = 0.65,
both estimates, we have very high significance (p < 2× 10−16)
also indicated by three asterisks.
goodnes of fit measured by R2 and the value of F-statistic and
the corresponding p-value. The R2 tells what percentage of the
variability of y the model explains,
F-statistic is basically a measure of significance of all
coefficients together excluding the effect of the mean β̂0 a.k.a
µ̂.
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Extracting coefficients

We can easily extract model coefficients and use them to plot the
fitted line on top of the original data:

plot(jitter(galton$child), jitter(galton$parent),
col="slateblue", axes=T, xlab="Child",
ylab="Parents", pch=19, cex=.5)

abline(a=lm.galton$coefficients[1],
b=lm.galton$coefficients[2],
col="tomato", lty=1, lwd=2, las=1)
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Extracting coefficients – plot
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Figure 1: Original (jittered) data points from Galton’s dataset together
with the line fitted using linear model.
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Linear model diagnostics

When fitting a linear model, we make some assumptions like the
normality of distribution for residuals (error term). We need to
check whether all these criteria are fulfilled. If they are, we can trust
our model. R provides an overloaded plot function to display some
diagnostic plots for a model.
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Residuals vs. Fitted
The very first diagnostic plot shows residuals εi = yi − ŷi against
fitted values ŷi . Intuitively (and it was our assumption), residuals
should have their mean ε̄ = 0.

plot(lm.galton, which=1, pch=4, col="olivedrab")
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Residuals variance homogenity
On the y-axis we have square root of modules of standardised
residuals. The residuals should be uniformly dispersed around the
mean, e.g. if for low values of ŷi residuals are small and for medium
values high, something went wrong.

plot(lm.galton, which=3, pch=4, col="olivedrab")
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Normality of residuals
Empirical quantiles for the distribution of residuals vs. theoretical
quantiles for the normal distribution of residuals (QQ-plot).

plot(lm.galton, which=2, pch=4, col="olivedrab")
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Outliers – leverage
Leverage hi measures the influence of value yi on the estimated ŷi .
Thus, indirectly, it shows also what is the influence of yi value on β̂i .
There should not be any outstanding leverages.

plot(lm.galton, which=5, pch=4, col="olivedrab")
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Cook’s distance
Cook proposed a measure of influence based on the extent to which
parameter estimates would change if one omitted the i-th
observation. An observation with Cook’s distance greater than 1 is
unusual.

plot(lm.galton, which=4, pch=4, col="olivedrab")
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Cook’s distance vs. leverage:

plot(lm.galton, which=6, pch=4, col="olivedrab")
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Some statistical tests useful in model diagnostics

Although visual examination of the plots is a quick and easy way of
checking validity of a model, hypotheses should be verified with
proper statistical tests. Some of the tests useful in diagnostics of a
linear model are discussed below.
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Shapiro-Wilk test of normality
Residuals should be normally distributed. We have checked this by
looking at Q-Q plot. Let us verify our finding using Shapiro-Wilk for
normality.

shapiro.test(lm.galton$residuals)

##
## Shapiro-Wilk normality test
##
## data: lm.galton$residuals
## W = 0.99275, p-value = 0.0001697

Low p-value tells us, we should reject H0 : ε ∼ N (0, σε). However,
some normality tests (including Shapiro-Wilk ) are, especially for
large number of data points, very sensitive to slight departures from
normality. Therefore Q-Q plot may still be a better alternative.
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A Q-Q plot

par(mfrow=c(1,2))
hist(lm.galton$residuals, col=c("slateblue","grey"))
qqnorm(lm.galton$residuals, pch=4, cex=.5, col="darkgrey")
qqline(lm.galton$residuals, col="red")

Histogram of lm.galton$residuals
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Shapiro-Wilk test of normality
Residuals should be normally distributed. We have checked this by
looking at Q-Q plot. Let us verify our finding using Shapiro-Wilk for
normality.

shapiro.test(lm.galton$residuals)

##
## Shapiro-Wilk normality test
##
## data: lm.galton$residuals
## W = 0.99275, p-value = 0.0001697

Low p-value tells us, we should reject H0 : ε ∼ N (0, σε). However,
some normality tests (including Shapiro-Wilk ) are, especially for
large number of data points, very sensitive to slight departures from
normality. Therefore Q-Q plot may still be a better alternative. . .
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Variance homogenity of residuals

Now, we will perform the Breusch-Pagan test of variance uniformity
to check whether residuals have uniform variance across all i . This
test (and the tests used later) are implemented in package lmtest.

library(lmtest)
bptest(child~parent, data=galton)

##
## studentized Breusch-Pagan test
##
## data: child ~ parent
## BP = 0.34256, df = 1, p-value = 0.5584

High p-value tells us there is no violation of variance uniformity.
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Are residuals independent?

When fitting the model, we have also assumed the residuals are
independent. We can check whether there is any auto-correlation
using, e.g. Durbin-Watson test:

dwtest(child~parent, order.by=~parent, data=galton)

##
## Durbin-Watson test
##
## data: child ~ parent
## DW = 0.20175, p-value < 2.2e-16
## alternative hypothesis: true autocorrelation is greater than 0

There is some auto-correlation between residuals sorted by parents’
height.
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Is the model truly linear?
We can also check whether linear model is appropriate here. Using
rainbow test, we can see whether different models could be fitted
for, e.g. tall and short parents (test will compare two linear models:
one for the shorter 50% parents and another for the remaining “tall”
parents):

raintest(child~parent, order.by=~parent, data=galton)

##
## Rainbow test
##
## data: child ~ parent
## Rain = 1.7378, df1 = 464, df2 = 462, p-value = 1.773e-09

Well, it seems that we could do better than linear model. We are
getting different β̂s for tall and short parents. . . However, splitting
data half-way may not be the best idea?
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