Reading and writing data

Marcin Kierczak

11/2/2016

Marcin Kierczak Reading and writing data

Reading data

@ Reading data is one of the most consuming and most
cumbersome aspects of bioinformatics. . .

@ R provides a number of ways to read and write data stored on
different media (file, database, url, twitter, Facebook, etc.) and
in different formats.

@ Package foreign contains a number of functions to import less
common data formats.

Marcin Kierczak Reading and writing data

Reading tables

Most often, we will use the read.table() function. It is really, really
flexible and nice way to read your data into a data.frame structure
with rows corresponding to observations and columns to particular
variables.

The function is declared in the following way:

read.table(file, header = FALSE, sep = ", quote = “""’, dec = ",
numerals = c(“allow.loss”, “warn.loss”, “no.loss"”), row.names,
col.names, as.is = IstringsAsFactors, na.strings = “NA”", colClasses
= NA, nrows = -1, skip = 0, check.names = TRUE, fill =
Iblank.lines.skip, strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = “#”, allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(), fileEncoding = “"
encoding = “unknown”, text, skipNul = FALSE)

’

Marcin Kierczak Reading and writing data

read.table parameters

You can read more about the read.table function on its man page,
but the most important arguments are:

file — the path to the file that contains data,

header — a logical indicating whether the first line of the file
contains variable names,

sep — a character determining variable delimiter, e.g. comma
for csv files,

quote — a character telling R which character surrounds strings,
dec — acharacter determining the decimal separator,
row/col.names — vectors containing row and column names,
na.strings — a character used for missing data,

nrows — how many rows should be read,

skip — how many rows to skip,

as.is — a vector of logicals or numbers indicating which columns
shall not be converted to factors,

fill = add NA to the end of shorter rows,

nosAsk-actors — 3 oo Rather se

read.table siblings

The read.table function has some siblings, functions with particular
arguments pre-set to a specific value to spare some time:

@ read.csv() and read.csv2() with comma and semicolon as
default sep and dot and comma as dec respectively,
@ read.delim() and read.delim2() for reading tab-delimited files.

We, however, most often use the canonical read.table().

Marcin Kierczak Reading and writing data

read.table — example

tab <- read.table(file = '~/Dropbox/Research/Behaviour-GWA!
sep = 1 |’
header = T)

tab[1,1:3]

#i# id uid reg_no

1 511799-2007 S11799/2007_621 S11799/2007

class(tab$reg_no)

[1] "factor"

tab <- read.table(file = '~/Dropbox/Research/Behaviour-GWAS
stringsAsFactors = F, sep = ' ', header = T)
class(tab$reg_no)

[1] "character"

What if you encounter errors?

@ StackOverflow,

@ Google — just type R and copy the error you got without your
variable names,

@ open the file — has the header line the same number of columns
as the first line?

@ in Terminal (on Linux/OsX) you can type some useful
commands.

Marcin Kierczak Reading and writing data

Useful commands for debugging

@ cat phenos.txt | awk -F';"'{print NF}'prints the number of
words in each row. -F';’ says that semicolon is the delimiter,
head -n 5 phenos.txt prints the 5 first lines of the file,

tail -n 5 phenos.txt prints the 5 last lines of the file,

head -n 5 phenos.txt | tail -n 2 will print lines 4 and 5. ..

wc -| phenos.txt will print the number of lines in the file

head -n 2 phenos.txt > test.txt will write the first 2 lines to a
new file

If it still does not give you a clue — just try to load first line of the
file.

If this did not help, split the file in two equal-size parts. Check
which part gives the error. Split this part into halves and check
which 1/4 gives the error. .. It is faster than you think!

Marcin Kierczak Reading and writing data

Writing with write.table()

read.table() has its counterpart, the write.table() function (as well
ass its siblings, like write.csv()). You can read more about it in the
documentation, let us show some examples:

vec <- rnorm(10)

write.table(vec, '') # write to screen

write.table(vec, file = 'vector.txt')

write to the system clipboard, handy!

write.table(vec, 'clipboard', col.names=F,
row.names=F)

or on UsX

clip <- pipe("pbcopy", "uw"

write.table(vec, file=clip)

close(clip)

To use in a spreadsheet

write.csv(vec, file = 'spreadsheet.csv')

Marcin Kierczak Reading and writing data

Writing big data

@ HINT: write.table() is rather slow on big data — it checks types
for every column and row and does separate formatting to each.
If your data consists of only one type of data, convert it to a
matrix using as.matrix before you write it!

@ You may want to use function ‘scan()’ that reads files as
vectors. The content does not have to be in the tabular form.
You can also use scan to read data from keyboard: typed.data
<- scan()

o If data are written as fixed-width fields, use the read.fwf()
function.

@ Also check out the readLines() function that enables you to
read data from any stream.

Marcin Kierczak Reading and writing data

Read data in XLS and Matlab

library(gdata)

Note, the gdata:: -— not necessary, but

good to refresh your memory:-)

data <- gdata::read.xls('myfile.xls', sheet = 2)

library(R.matlab)
data <- R.matlab::readMat("mydata.mat")

Marcin Kierczak Reading and writing data

Working with url data

url <- 'https://en.wikipedia.org/wiki/List_of_countries_by.
conn <- url(url, 'r')

raw.data <- readLines(conn)

raw.data[1:3]

[1] "<!DOCTYPE html>"
[2] "<html class=\"client-nojs\" lang=\"en\" dir=\"1ltr\
[3] "<head>"

But data ts often tabularized
library(rvest)

html <- read_html (url)

tables <- html_nodes(html, 'table')
data <- html_table(tables[3])[[1]]

Marcin Kierczak Reading and writing data

Working with databases

It is also relatively easy to work with different databases. We will
focus on MySQL and present only one example that uses the
RMySQL package (check also RODBC and RPostgreSQL).

library (RMySQL)

db.conn <- dbConnect(MySQL(), user='me',
password="'qwertyl123"',
dbname='genes',
host='127.0.0.237")

query <- dbSendQuery(db.conn, 'SELECT * FROM table7')

data <- fetch(query, n = - 1)

Marcin Kierczak Reading and writing data

Capabilities

If you are getting some errors, e.g. trying to connect to a url, you
may check whether your system (and R) support particular type of
file or connection:

capabilities()

jpeg png tiff tcltk

TRUE TRUE TRUE TRUE 4
#it http/ftp sockets libxml fifo cl
TRUE TRUE TRUE TRUE Fi
NLS profmem cairo ICU long.don
TRUE TRUE TRUE TRUE

Marcin Kierczak Reading and writing data

