Elements of a programming language — 4

Marcin Kierczak

03 October 2017

Marcin Kierczak Elements of a programming language — 4

Contents of the lecture

variables and their types

operators

vectors

numbers as vectors

strings as vectors

matrices

lists

data frames

objects

repeating actions: iteration and recursion
decision taking: control structures
functions in general

variable scope

base functions

®© © 6 6 6 6 6 6 6 6 6 66 0 o

Marcin Kierczak Elements of a programming language — 4

Repeating actions

In several algorithms, the point is to repeat certain action several
times. In the language of mathematical formulas, we have for
instance the following signs for repeating an action:

*,(expression)
which denotes addition over elements 1...n or
" (expression)

which denotes multiplication of elements 1...n.

It is important to learn how to translate these (and similar) formulas
into the R language.

Marcin Kierczak Elements of a programming language — 4

Repeating actions — for loop

One way to repeat an action is to use the for-loop

for (i in 1:5) {
cat(paste('Performing operation no.', i), '\n')

3

Performing operation no.
Performing operation no.
Performing operation no.
Performing operation no.

a s W=

Performing operation no.

Marcin Kierczak Elements of a programming language — 4

Repeating actions — for loop cted.

A slight modification of the above example will skip odd indices.

for (i in c(2,4,6,8,10)) {
cat(paste('Performing operation no.', i), '\n')

3

Performing operation no.
Performing operation no.
Performing operation no.
Performing operation no.
Performing operation no. 10

0 O PN

Marcin Kierczak Elements of a programming language — 4

Repeating actions — for loop, external counter

Sometimes, we also want an external counter:

cnt <- 1
for (i in <¢(2,4,6,8,10)) {
cat(paste('Performing operation no.', cnt,
'on element', i), '\n')
cnt <- cnt + 1

Performing operation no. on element
Performing operation no.
Performing operation no.
Performing operation no.

Performing operation no.

on element
on element

0 O PN

on element
on element 10

a s W=

Marcin Kierczak Elements of a programming language — 4

Repeating actions — for loop, an example

Say, we want to add 1 to every element of a vector:

vec <- c(1:5)
vec

[1] 1 2345

for (i in vec) {
vec[i] <- vec[i] + 1
}

vec

[1] 23456

Marcin Kierczak Elements of a programming language — 4

Repeating actions — avoid loops and vectorize!

The above can be achieved in R by means of vectorization:

vec <- c(1:5)
vec + 1

[1] 2345 6

Let us compare the time of execution of the vectorized version
(vector with 10,000 elements):

user system elapsed
0.040 0.003 0.044

to the loop version:

user system elapsed
0.101 0.002 0.102

Marcin Kierczak Elements of a programming language — 4

Repeating actions — the while loop

There is also another type of loop in R, the while loop which is
executed as long as some condition is true.

x <-1
while (x < 5) {

cat(x, " ... ™)
x <-x +1

#1 ...2 ...3 ...4

Marcin Kierczak Elements of a programming language — 4

Recursion

When we explicitely repeat an action using a loop, we talk about
iteration. We can also repeat actions by means of recursion,
i.e. when a function calls itself. Let us implement a factorial !:

factorial.rec <- function(x) {
if (x==0 || x==1)
return(1)
else

return(x * factorial.rec(x - 1)) # Recursive call!
}

factorial.rec(5)

[1] 120

Marcin Kierczak Elements of a programming language — 4

Recursion = iteration?

Yes, every iteration can be converted to recursion (Church-Turing
conjecture) and vice-versa. It is not always obvious, but theoretically

it is doable. Let's see how to implement factorial in iterative
manner:

factorial.iter <- function(x) {

if x==0 || x==1)
return(1)

else {
tmp <- 1

for (i in 2:x) {
tmp <- tmp * i
}
return(tmp)
}
}

factorial.iter(5)

Marcin Kierczak Elements of a programming language — 4

Recursion == iteration, really?

More writing for the iterative version, right? What about the time
efficiency?
The recursive version:

[1] 2.432902e+18

#i# user system elapsed
0.001 0.000 0.002

And the iterative one:
[1] 2.432902e+18

user system elapsed
0.006 0.001 0.007

Marcin Kierczak Elements of a programming language — 4

Loops — avoid growing data

Avoid changing dimensions of an object inside the loop:

v <—- c() # Initialize
for (i in 1:100) {
v <- c(v, i)

¥

It is much better to do it like this:

v <- rep(NA, 100) # Initialize with length
for (i in 1:100) {
v[i] <- 1

¥

Always try to know the size of the object you are going to create!

Marcin Kierczak Elements of a programming language — 4

Decision taking — an if clause

Often, one has to take a different course of action depending on a
flow of the algorithm. You have already seen the if-else block. Let's
print only odd numbers [1, 10]:

v <- 1:10
for (i in v) {
if (1 %% 2 '=0) { # if clause
cat(i, ' ')
}
}

1 3 5 7 9

Marcin Kierczak Elements of a programming language — 4

Decision taking — if-else

If we want to print ‘o’ for an odd number and ‘e’ for an even, we
could write either:

v <- 1:10
for (i in v) {
if (1 %% 2 '=0) { # if clause

cat('o ')
}
if (1 %% 2 == 0) { # another if-clause
cat('e ')
}
}

##f o e o e oeoeoe

Marcin Kierczak Elements of a programming language — 4

Decision taking — if-else

or

v <- 1:10
for (i in v) {
if (A %% 2 '=0) { # if clause

cat('o ')
} else { # another if-clause
cat('e ')
}
}

o e o e oeoeoe

Marcin Kierczak Elements of a programming language — 4

Decision taking — if-else

or else

v <- 1:10
for (i in v) {
tmp <- 'e ' # set default to even
if (1 %% 2 '=0) { # if clause
tmp <- 'o ' # change default for odd numbers
b
cat (tmp)

o e o e 0o e o0oeo0e
Each three are ways are good and are mainly the matter of style. ..

Marcin Kierczak Elements of a programming language — 4

Decision taking — more alternatives

So far, so good, but we were only dealing with 3 alternatives. Let's
say that we want to print ‘?" for zero, ‘e’ for even and ‘o’ for an odd
number:

v <- c(0:10)
for (i in v) {
if (4 == 0) {

cat('? ')
} else if (4 %% 2 '= 0) { # if clause
cat('o ')
} else { # another if-clause
cat('e ')
}
}

7 o eoeoeoeoe

Marcin Kierczak Elements of a programming language — 4

If-else clauses operate on logical values. What if we want to take
decisions based on non-logical values? Well, if-else will still work by
evaluating a number of comparisons, but we can also use switch:

switch.demo <- function(x) {
switch(class(x),
logical = ,
cat('Numeric or logical.'),
factor = cat('Factor.'),
cat('Undefined')
)

numeric

}
switch.demo (x=TRUE)

Numeric or logical.
switch.demo(x=15)

Marcin Kierczak Elements of a programming language — 4

Often, it is really handy to re-use some code we have written or to
pack together the code that is doing some task. Functions are a
really good way to do this in R:

add.one <- function(argl) {
argl <- argl + 1

return(argl)

}
add.one(1)

[1] 2

add.one()

Error in add.one(): argument "argl" is missing, with no

Marcin Kierczak Elements of a programming language — 4

Anatomy of a function

A function consists of: formal arguments, function body and
environment:

formals (ecdf)

$x

body (plot.ecdf)

{

#Hit plot.stepfun(x, ..., ylab = ylab, verticals = verti
#u pch = pch)

abline(h = c(0, 1), col = col.Olline, 1ty = 2)

}

environment (ecdf)

Marcin Kierczak Elements of a programming language — 4

Functions — default values

Sometimes, it is good to use default values for some arguments:

add.a.num <- function(arg, num=1) {
arg <- arg + num
return(arg)

}
add.a.num(1, 5)

[1] 6

add.a.num(1) # skip the num argument

[1] 2

add.a.num(num=1) # skip the first argument

Error in add.a.num(num = 1): argument "arg" is missing,

Marcin Kierczak Elements of a programming language — 4

Functions — order of arguments

args.demo <- function(x, y, arg3) {
print(paste('x =', x, 'y =', y, 'arg3 =', arg3))

}

args.demo(1,2,3)

[1] "x =1y =2 arg3 = 3"

args.demo(x=1, y=2, arg3=3)

[1] "x =1y = 2 arg3 = 3"
args.demo(x=1, 2, 3)
[1] "x =1y = 2 arg3 = 3"

args.demo(a=3, x=1, y=2)

Marcin Kierczak Elements of a programming language — 4

Functions — order of arguments 2

args.demo2 <- function(x, arg2, arg3) {

print(paste('x =', x, 'arg2 =', arg2, 'arg3 =', arg3))
}
args.demo2(x=1, y=2, ar=3)

Error in args.demo2(x = 1, y = 2, ar = 3): argument 3 m

Marcin Kierczak Elements of a programming language — 4

Functions — variables scope

Functions ‘see’ not only what has been passed to them as

arguments:
x <=7
y <= 3

xyplus <- function(x) {
X <-x+y
return(x)

}
y <- xyplus(x)

y

[1] 10

Marcin Kierczak Elements of a programming language — 4

Functions — variables scope cted.

Everything outside the function is called global environment.
There is a special operator for working on global environment from
within a function:

x <-1

xplus <- function(x) {
x <<-x+1

}

xplus(x)

X

[1] 2

xplus (x)
X

[1] 3

Marcin Kierczak Elements of a programming language — 4

Functions — the dot-dot-dot argument

There is a special argument ... (ellipsis) which allowes you to give
any number of arguments or pass arguments downstream:

c # Any number of arguments

function (...) .Primitive("c")

my.plot <- function(x, y, ...) { # Passing downstream
plot(x, y, las=1, cex.axis=.8, ...)

+

my.plot(1,1)

14 +

12

Marcin Kierczak Elements of a programming language — 4

Functions — the dot-dot-dot argument trick

What if the authors of, e.g. plot.something wrapper forgot about
the dot-dot-dot?

my.plot <- function(x, y) { # Passing downstrem
plot(x, y, las=1, cex.axis=.8, ...)

}

formals(my.plot) <- c(formals(my.plot), alist(... =))

my.plot(1l, 1, col='red', pch=19)

14

12 +

> 10 o L]

Marcin Kierczak Elements of a programming language — 4

Lazy evaluation

In R, arguments are evaluated as late as possible, i.e. when they are
needed. This is lazy evaluation:

h <- function(a = 1, b = d) {
d<-(a+1) 2
c(a, b)

}

h()

[1] 1 4

The above won't be possible in, e.g. C where values of both
arguments have to be known before calling a function eager
evaluation.

Marcin Kierczak Elements of a programming language — 4

In R everything is a function

Because in R everything is a function, we can redefine things:

+

function (el, e2) .Primitive("+"

“+° <- function(el, e2) { el - e2 }
2 + 2

[1] 0

rm(||+||)
2 + 2

[1] 4

Marcin Kierczak Elements of a programming language — 4

Infix notation

Operators like ‘4, *-" or "*' are using the so-called infix functions,
where the function name is between arguments. We can define our
own:

“Y%phkT <= function(x, y) {
paste(x,y)

}

|a| %p% |b|

[1] "a b"

Marcin Kierczak Elements of a programming language — 4

Base functions

When we start R, the following packages are pre-loaded
automatically:

.1ibPaths() # get library location

library() # see all packages installed
search() # see packages currently loaded

[1] ".GlobalEnv" "package:stats" "package: gr:

Check what basic functions are offered by packages: base, utils and
we will soon work with package graphics. If you want to see what
statistical functions are in your arsenal, check out package stats.

Marcin Kierczak Elements of a programming language — 4

