
Elements of a programming language – 3

Marcin Kierczak

21 September 2016

Marcin Kierczak Elements of a programming language – 3

Contents of the lecture

variables and their types
operators
vectors
numbers as vectors
strings as vectors
matrices
lists
data frames
objects
repeating actions: iteration and recursion
decision taking: control structures
functions in general
variable scope
core functions

Marcin Kierczak Elements of a programming language – 3

Matrices
A matrix is a 2-dimensional data structure, like vector, it consists of
elements of the same type. A matrix has rows and columns.
Say, we want to construct this matrix in R:

X =

 1 2 3
4 5 6
7 8 9


X <- matrix(1:9, # a sequence of numbers to fill in

nrow=3, # three rows (alt. ncol=3)
byrow=T) # populate matrix by row

X

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

Marcin Kierczak Elements of a programming language – 3

Matrices – indexing
Elements of a matrix are retrieved using the ‘[]’ notation, like we
have seen for vectors. Here, we have to specify 2 dimensions – the
row and the column:

X[1,2] # Retrieve element from the 1st row, 2nd column

[1] 2

X[3,] # Retrieve the entire 3rd row

[1] 7 8 9

X[,2] # Retrieve the 2nd column

[1] 2 5 8

Marcin Kierczak Elements of a programming language – 3

Matrices – indexing cted.

X[c(1,3),] # Retrieve rows 1 and 3

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 7 8 9

X[c(1,3),c(3,1)]

[,1] [,2]
[1,] 3 1
[2,] 9 7

Marcin Kierczak Elements of a programming language – 3

Matrices – dimensions

To check the dimensions of a matrix, use dim():

X

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

dim(X) # 3 rows and 3 columns

[1] 3 3

Nobody knows why dim() does not work on vectors. . . use length()
instead.

Marcin Kierczak Elements of a programming language – 3

Matrices – operations 1

Usually the functions that work for a vector also work for matrices.
To order a matrix with respect to, say, 2nd column:

X <- matrix(sample(1:9,size = 9), nrow = 3)
ord <- order(X[,2])
X[ord,]

[,1] [,2] [,3]
[1,] 9 2 6
[2,] 1 3 4
[3,] 8 7 5

Marcin Kierczak Elements of a programming language – 3

Matrices – transposition
To transpose a matrix use t():

X

[,1] [,2] [,3]
[1,] 9 2 6
[2,] 8 7 5
[3,] 1 3 4

t(X)

[,1] [,2] [,3]
[1,] 9 8 1
[2,] 2 7 3
[3,] 6 5 4

Nobody knows why dim() does not work on vectors. . . use length()
instead.

Marcin Kierczak Elements of a programming language – 3

Matrices – operations 2

To get the diagonal, of the matrix:

X

[,1] [,2] [,3]
[1,] 9 2 6
[2,] 8 7 5
[3,] 1 3 4

diag(X) # get values on the diagonal

[1] 9 7 4

Marcin Kierczak Elements of a programming language – 3

Matrices – operations, triangles
To get the upper or the lower triangle use upper.tri() and
lower.tri() respectively:

X # print X

[,1] [,2] [,3]
[1,] 9 2 6
[2,] 8 7 5
[3,] 1 3 4

upper.tri(X) # which elements form the upper triangle

[,1] [,2] [,3]
[1,] FALSE TRUE TRUE
[2,] FALSE FALSE TRUE
[3,] FALSE FALSE FALSE

X[upper.tri(X)] <- 0 # set them to 0
X # print the new matrix

[,1] [,2] [,3]
[1,] 9 0 0
[2,] 8 7 0
[3,] 1 3 4

Marcin Kierczak Elements of a programming language – 3

Matrices – multiplication
Different types of matrix multiplication exist:

A <- matrix(1:4, nrow = 2, byrow=T)
B <- matrix(5:8, nrow = 2, byrow=T)
A * B # Hadamard product

[,1] [,2]
[1,] 5 12
[2,] 21 32

A %*% B # Matrix multiplication

[,1] [,2]
[1,] 19 22
[2,] 43 50

A %x% B # Kronecker product
A %o% B # Outer product (tensor product)

Marcin Kierczak Elements of a programming language – 3

Matrices – outer

Outer product can be useful for generating names

outer(letters[1:4], LETTERS[1:4], paste, sep="-")

[,1] [,2] [,3] [,4]
[1,] "a-A" "a-B" "a-C" "a-D"
[2,] "b-A" "b-B" "b-C" "b-D"
[3,] "c-A" "c-B" "c-C" "c-D"
[4,] "d-A" "d-B" "d-C" "d-D"

Marcin Kierczak Elements of a programming language – 3

Expand grid
But expand.grid() is more convenient when you want,
e.g. generate combinations of variable values:

expand.grid(height = seq(120, 121),
weight = c('1-50', '51+'),
sex = c("Male","Female"))

height weight sex
1 120 1-50 Male
2 121 1-50 Male
3 120 51+ Male
4 121 51+ Male
5 120 1-50 Female
6 121 1-50 Female
7 120 51+ Female
8 121 51+ Female

Marcin Kierczak Elements of a programming language – 3

Matrices – apply

Function apply is a very useful function that applies a given
function to either each value of the matrix or in a column/row-wise
manner. Say, we want to have mean of values by column:

X

[,1] [,2] [,3]
[1,] 9 0 0
[2,] 8 7 0
[3,] 1 3 4

apply(X, MARGIN=2, mean) # MARGIN=1 would do it for rows

[1] 6.000000 3.333333 1.333333

Marcin Kierczak Elements of a programming language – 3

Matrices – apply cted.
And now we will use apply() to replace each element it a matrix
with its deviation from the mean squared:

X

[,1] [,2] [,3]
[1,] 9 0 0
[2,] 8 7 0
[3,] 1 3 4

my.mean <- mean(X)
apply(X, MARGIN=c(1,2),

function(x, my.mean) (x - my.mean)^2,
my.mean)

[,1] [,2] [,3]
[1,] 29.641975 12.641975 12.6419753
[2,] 19.753086 11.864198 12.6419753
[3,] 6.530864 0.308642 0.1975309

Marcin Kierczak Elements of a programming language – 3

Matrices – useful fns.

While apply() is handy, it is a bit slow and for the most common
statistics, there are special functions col/row Sums/Means:

X

[,1] [,2] [,3]
[1,] 9 0 0
[2,] 8 7 0
[3,] 1 3 4

colSums(X)

[1] 18 10 4

These functions are faster!
Marcin Kierczak Elements of a programming language – 3

Matrices – adding rows/columns
One may wish to add a row or a column to an already existing
matrix or to make a matrix out of two or more vectors of equal
length:

x <- c(1,1,1)
y <- c(2,2,2)
cbind(x,y)

x y
[1,] 1 2
[2,] 1 2
[3,] 1 2

rbind(x,y)

[,1] [,2] [,3]
x 1 1 1
y 2 2 2Marcin Kierczak Elements of a programming language – 3

Matrices – more dimensions

dim(Titanic)

[1] 4 2 2 2

Marcin Kierczak Elements of a programming language – 3

Matrices – more dimensions, example

Sex

Survived

C
la

ss

A
ge

C
re

w

No Yes

A
du

lt

NoYes

C
hi

ld

3r
d

A
du

lt
C

hi
ld

2n
d

A
du

ltC
hi

ld

1s
t

Male Female

A
du

ltC
hi

ld
Marcin Kierczak Elements of a programming language – 3

Lists – collections of various data types
A list is a collection of elements that can be of various data types:

name <- c('R2D2', 'C3PO', 'BB8')
weight <- c(21, 54, 17)
data <- list(name=name, weight)
data

$name
[1] "R2D2" "C3PO" "BB8"
##
[[2]]
[1] 21 54 17

data$name

[1] "R2D2" "C3PO" "BB8"

data[[1]]

[1] "R2D2" "C3PO" "BB8"

Marcin Kierczak Elements of a programming language – 3

Lists – collections of various data types
Elements of a list can also be different data structures:

weight <- matrix(sample(1:9, size = 9), nrow=3)
data <- list(name, weight)
data

[[1]]
[1] "R2D2" "C3PO" "BB8"
##
[[2]]
[,1] [,2] [,3]
[1,] 5 4 3
[2,] 7 9 8
[3,] 6 1 2

data[[2]][3]

[1] 6
Marcin Kierczak Elements of a programming language – 3

Data frames
A data frame or a data table is a data structure very handy to
use. In this structure elements of every column have the same type,
but different columns can have different types. Technically, a data
frame is a list of vectors. . .

df <- data.frame(c(1:5),
LETTERS[1:5],
sample(c(TRUE, FALSE), size = 5,

replace=T))
df

c.1.5. LETTERS.1.5. sample.c.TRUE..FALSE...size...5..replace...T.
1 1 A FALSE
2 2 B TRUE
3 3 C TRUE
4 4 D FALSE
5 5 E TRUE

Marcin Kierczak Elements of a programming language – 3

Data frames – cted.
As you have seen, columns of a data frame are named after the call
that created them. Not always the best option. . .

df <- data.frame(no=c(1:5),
letter=c('a','b','c','d','e'),
isBrown=sample(c(TRUE, FALSE),

size = 5,
replace=T))

df

no letter isBrown
1 1 a TRUE
2 2 b TRUE
3 3 c TRUE
4 4 d FALSE
5 5 e FALSE

Marcin Kierczak Elements of a programming language – 3

Data frames – accessing.
As you have seen, columns of a data frame are named after the call
that created them. Not always the best option. . .

df[1,] # get the first row

no letter isBrown
1 1 a TRUE

df[,2] # the first column

[1] a b c d e
Levels: a b c d e

df[2:3, 'isBrown'] # get rows 2-3 from the isBrown column

[1] TRUE TRUE

df$letter[1:2] # get the first 2 letters

[1] a b
Levels: a b c d e

Marcin Kierczak Elements of a programming language – 3

Data frames – factors

An interesting observation:

df$letter

[1] a b c d e
Levels: a b c d e

df$letter <- as.character(df$letter)
df$letter

[1] "a" "b" "c" "d" "e"

Marcin Kierczak Elements of a programming language – 3

Data frames – factors cted.

To treat characters as characters at data frame creation time, one
can use the stringsAsFactors option set to TRUE:

df <- data.frame(no=c(1:5),
letter=c("a","b","c","d","e"),
isBrown=sample(c(TRUE, FALSE),

size = 5,
replace=T),

stringsAsFactors = TRUE)
df$letter

[1] a b c d e
Levels: a b c d e

Well, as you see, it did not work as expected. . .

Marcin Kierczak Elements of a programming language – 3

Data frames – names
To get or change row/column names:

colnames(df) # get column names

[1] "no" "letter" "isBrown"

rownames(df) # get row names

[1] "1" "2" "3" "4" "5"

rownames(df) <- letters[1:5]
rownames(df)

[1] "a" "b" "c" "d" "e"

df['b',]

no letter isBrown
b 2 b FALSE

Marcin Kierczak Elements of a programming language – 3

Data frames – merging.

A very useful feature of R is merging two data frames on certain key
using merge:

df1 <- data.frame(no=c(1:5),
letter=c("a","b","c","d","e"))

df2 <- data.frame(no=c(1:5),
letter=c("A","B","C","D","E"))

merge(df1, df2, by='no')

no letter.x letter.y
1 1 a A
2 2 b B
3 3 c C
4 4 d D
5 5 e E

Marcin Kierczak Elements of a programming language – 3

Objects – type vs. class
An object of class factor is internally represented by numbers:

size <- factor('small')
class(size) # Class 'factor'

[1] "factor"

mode(size) # Is represented by 'numeric'

[1] "numeric"

typeof(size) # Of integer type

[1] "integer"

Marcin Kierczak Elements of a programming language – 3

Objects – structure
Many functions return objects. We can easily examine their
structure:

his <- hist(1:5, plot=F)
str(his)

List of 6
$ breaks : num [1:5] 1 2 3 4 5
$ counts : int [1:4] 2 1 1 1
$ density : num [1:4] 0.4 0.2 0.2 0.2
$ mids : num [1:4] 1.5 2.5 3.5 4.5
$ xname : chr "1:5"
$ equidist: logi TRUE
- attr(*, "class")= chr "histogram"

object.size(hist) # How much memory the object consumes

832 bytes
Marcin Kierczak Elements of a programming language – 3

Objects – fix
We can easily modify values of object’s atributes:

attributes(his)

$names
[1] "breaks" "counts" "density" "mids" "xname" "equidist"
##
$class
[1] "histogram"

attr(his, "names")

[1] "breaks" "counts" "density" "mids" "xname" "equidist"

#fix(his) # Opens an object editor

Marcin Kierczak Elements of a programming language – 3

Lists as S3 classes
A list that has been named, becomes an S3 class:

my.list <- list(numbers = c(1:5),
letters = letters[1:5])

class(my.list)

[1] "list"

class(my.list) <- 'my.list.class'
class(my.list) # Now the list is of S3 class

[1] "my.list.class"

However, that was it. We cannot enforce that numbers will contain
numeric values and that letters will contain only characters. S3 is a
very primitive class.

Marcin Kierczak Elements of a programming language – 3

S3 classes
For an S3 class we can define a generic function applicable to all
objects of this class.

print.my.list.class <- function(x) {
cat('Numbers:', x$numbers, '\n')
cat('Letters:', x$letters)

}
print(my.list)

Numbers: 1 2 3 4 5
Letters: a b c d e

But here, we have no error-proofing. If the object will lack numbers,
the function will still be called:

class(his) <- 'my.list.class' # alter class
print(his) # Gibberish but no error...

Numbers:
Letters:

Marcin Kierczak Elements of a programming language – 3

S3 classes – still useful?

Well, S3 class mechanism is still in use, esp. when writing generic
functions, most common examples being print and plot. For
example, if you plot an object of a Manhattan.plot class, you write
plot(gwas.result) but the true call is: plot.manhattan(gwas.result).
This makes life easier as it requires less writing, but it is up to the
function developers to make sure everything works!

Marcin Kierczak Elements of a programming language – 3

S4 class mechanism

S4 classes are more advanced as you actually define the structure of
the data within the object of your particular class:

setClass('gene',
representation(name='character',

coords='numeric')
)

my.gene <- new('gene', name='ANK3',
coords=c(1.4e6, 1.412e6))

Marcin Kierczak Elements of a programming language – 3

S4 class – slots

The variables within an S4 class are stored in the so-called slots. In
the above example, we have 2 such slots: name and coords. Here is
how to access them:

my.gene@name # access using @ operator

[1] "ANK3"

my.gene@coords[2] # access the 2nd element in slot coords

[1] 1412000

Marcin Kierczak Elements of a programming language – 3

S4 class – methods
The power of classes lies in the fact that they define both the data
types in particular slots and operations (functions) we can perform
on them. Let us define a generic print function for an S4 class:

setMethod('print', 'gene',
function(x) {

cat('GENE: ', x@name, ' --> ')
cat('[', x@coords, ']')

})

Creating a generic function for 'print' from package 'base' in the global environment

[1] "print"

print(my.gene) # and we use the newly defined print

GENE: ANK3 --> [1400000 1412000]
Marcin Kierczak Elements of a programming language – 3

