
Elements of the R programming language – 2

Marcin Kierczak with Thomas Källman (labs)

20 March 2017

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Contents of the lecture

variables and their types
operators
vectors
numbers as vectors
strings as vectors
matrices
lists
data frames
objects
repeating actions: iteration and recursion
decision taking: control structures
functions in general
variable scope
core functions

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Complex data structures

Using the previously discussed basic data types (numeric, integer,
logical and character) one can construct more complex data
structures:

dim Homogenous Heterogenous

0d n/a n/a
1d vectors list
2d matrices data frame
nd arrays n/a

factors – special type

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Atomic vectors

An atomic vector, or simply a vector is a one dimensional data
structure (a sequence) of elements of the same data type. Elements
of a vector are oficiallly called components, but we will just call
them elements.

We construct vectors using core function c() (construct).

vec <- c(1,2,5,7,9,27,45.5)
vec

[1] 1.0 2.0 5.0 7.0 9.0 27.0 45.5

In R, even a single number is a one-element vector. You have to get
used to think in terms of vectors. . .

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Atomic vectors cted.
You can also create empty/zero vectors of a given type and length:

vector('integer', 5) # a vector of 5 integers

[1] 0 0 0 0 0

vector('character', 5)

[1] "" "" "" "" ""

character(5) # does the same

[1] "" "" "" "" ""

logical(5) # same as vector('logical', 5)

[1] FALSE FALSE FALSE FALSE FALSE
Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Combining two or more vectors

Vectors can easily be combined:

v1 <- c(1,3,5,7.56)
v2 <- c('a','b','c')
v3 <- c(0.1, 0.2, 3.1415)
c(v1, v2, v3)

[1] "1" "3" "5" "7.56" "a" "b" "c"
[8] "0.1" "0.2" "3.1415"

Please note that after combining vectors, all elements became
character. It is called a coercion.

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Basic vector arithmetics

v1 <- c(1, 2, 3, 4)
v2 <- c(7, -9, 15.2, 4)
v1 + v2 # addition

[1] 8.0 -7.0 18.2 8.0

v1 - v2 # subtraction

[1] -6.0 11.0 -12.2 0.0

v1 * v2 # scalar multiplication

[1] 7.0 -18.0 45.6 16.0

v1 / v2 # division

[1] 0.1428571 -0.2222222 0.1973684 1.0000000
Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors – recycling rule

v1 <- c(1, 2, 3, 4, 5)
v2 <- c(1, 2)
v1 + v2

Warning in v1 + v2: longer object length is not a multiple of shorter
object length

[1] 2 4 4 6 6

Values in the shorter vector will be recycled to match the length of
the longer one: v2 <- c(1, 2, 1, 2, 1)

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors – indexing
We can access or retrieve particular elements of a vector by using
the [] notation:

vec <- c('a', 'b', 'c', 'd', 'e')
vec[1] # the first element

[1] "a"

vec[5] # the fifth element

[1] "e"

vec[-1] # remove the first element

[1] "b" "c" "d" "e"

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors – indexing cted.
And what happens if we want to retrieve elements outside the
vector?

vec[0] # R counts elements from 1

character(0)

vec[78] # Index past the length of the vector

[1] NA

Note, if you ask for an element with index lower than the index of
the first element, you will het an empty vector of the sme type as
the original vector. If you ask for an element beyond the vector’s
length, you get an NA value.

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors – indexing cted.
You can also retrieve elements of a vector using a vector of indices:

vec <- c('a', 'b', 'c', 'd', 'e')
vec.ind <- c(1,3,5)
vec[vec.ind]

[1] "a" "c" "e"

Or even a logical vector:

vec <- c('a', 'b', 'c', 'd', 'e')
vec.ind <- c(TRUE, FALSE, TRUE, FALSE, TRUE)
vec[vec.ind]

[1] "a" "c" "e"

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors – indexing using names

You can name elements of your vector:

vec <- c(23.7, 54.5, 22.7)
names(vec) # by default there are no names

NULL

names(vec) <- c('sample1', 'sample2', 'sample3')
vec[c('sample2', 'sample1')]

sample2 sample1
54.5 23.7

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors – removing elements

You can return a vector without certain elements:

vec <- c(1, 2, 3, 4, 5)
vec[-5] # without the 5-th element

[1] 1 2 3 4

vec[-(c(1,3,5))] # withoutelements 1, 3, 5

[1] 2 4

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors indexing – conditions

Also logical expressions are allowed in indexing:

vec <- c(1, 2, 3, 4, 5)
vec < 3 # we can use the value of this logical comparison

[1] TRUE TRUE FALSE FALSE FALSE

vec[vec < 3]# Et voila!

[1] 1 2

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors – more operations
You can easily reverse a vector:

vec <- c(1, 2, 3, 4, 5)
rev(vec)

[1] 5 4 3 2 1

You can generate vectors of subsequent numbers using ‘:’, e.g.:

v <- c(5:7)
v

[1] 5 6 7

v2 <- c(3:-4)
v2

[1] 3 2 1 0 -1 -2 -3 -4
Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors – size

To get the size of a vector, use length():

vec <- c(1:78)
length(vec)

[1] 78

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors – substitute element
To substitute an element in a vector simply:

vec <- c(1:5)
vec

[1] 1 2 3 4 5

vec[3] <- 'a' # Note the coercion!
vec

[1] "1" "2" "a" "4" "5"

To insert ‘a’ at, say, the 2nd position:

c(vec[1], 'a', vec[2:length(vec)])

[1] "1" "a" "2" "a" "4" "5"

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors – changing the length

What if we write past the vectors last element?

vec <- c(1:5)
vec

[1] 1 2 3 4 5

vec[9] <- 9
vec

[1] 1 2 3 4 5 NA NA NA 9

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors – counting values
One may be interested in the count of particular values:

vec <- c(1:5, 1:4, 1:3) # a vector with repeating values
table(vec) # table of counts

vec
1 2 3 4 5
3 3 3 2 1

tab <- table(vec)/length(vec) # table of freqs.
round(tab, digits=3) # and let's round it

vec
1 2 3 4 5
0.250 0.250 0.250 0.167 0.083

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors – sorting
To sort values of a vector:

vec <- c(1:5, NA, NA, 1:3)
sort(vec) # oops, NAs got lost

[1] 1 1 2 2 3 3 4 5

sort(vec, na.last = TRUE)

[1] 1 1 2 2 3 3 4 5 NA NA

sort(vec, decreasing = TRUE) # in a decreasing order

[1] 5 4 3 3 2 2 1 1

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Sequences of numbers
R provides also a few handy functions to generate sequences of
numbers:

c(1:5, 7:10) # the ':' operator

[1] 1 2 3 4 5 7 8 9 10

(seq1 <- seq(from=1, to=10, by=2))

[1] 1 3 5 7 9

(seq2 <- seq(from=11, along.with = seq1))

[1] 11 12 13 14 15

seq(from=10, to=1, by=-2)

[1] 10 8 6 4 2Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

A detour – printing with ()

Note what we did here, if you enclose the expression in (), the result
of assignment will be also printed:

seq1 <- seq(from=1, to=5)
seq1 # has to be printed explicitely

[1] 1 2 3 4 5

(seq2 <- seq(from=5, to=1)) # will print automatically

[1] 5 4 3 2 1

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Back to sequences

One may also wish to repeat certain value or a vector n times:

rep('a', times=5)

[1] "a" "a" "a" "a" "a"

rep(1:5, times=3)

[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

rep(seq(from=1, to=3, by=2), times=2)

[1] 1 3 1 3

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Sequences of random numbers

There is also a really useful function sample that helps with
generating sequences of random numbers:

simulate casting a fair dice 10x
sample(x = c(1:6), size=10, replace = T)

[1] 1 5 2 3 4 6 4 4 4 4

make it unfair, it is loaded on '3'
myprobs = rep(0.15, times=6)
myprobs[3] <- 0.25 # a bit higher probability for '3'
sample(x = c(1:6), size=10, replace = T, prob=myprobs)

[1] 3 2 1 4 4 6 4 4 2 3

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Fair vs. loaded dice

Now, let us see how this can be useful. We need more than 10
results. Let’s cast our dices 10,000 times and plot the freq.
distribution.

simulate casting a fair dice 10x
fair <- sample(x = c(1:6), size=10e3, replace = T)
unfair <- sample(x = c(1:6), size=10e3, replace = T,

prob=myprobs)

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Fair vs. loaded dice – the result

1 2 3 4 5 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

x

fr
eq

fair
unfair

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Sample – one more use
The sample function has one more interesting feature, it can be
used to randomize order of already created vectors:

mychars <- c('a', 'b', 'c', 'd', 'e', 'f')
mychars

[1] "a" "b" "c" "d" "e" "f"

sample(mychars)

[1] "a" "f" "e" "c" "d" "b"

sample(mychars)

[1] "a" "b" "e" "c" "d" "f"

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors/sequences – more advanced operations

v1 <- sample(1:5, size = 4)
v1

[1] 3 1 5 4

max(v1) # max value of the vector

[1] 5

min(v1) # min value

[1] 1

sum(v1) # sum all the elements

[1] 13

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors/sequences – more advanced operations 2

v1

[1] 3 1 5 4

diff(v1) # diff. of element pairs

[1] -2 4 -1

cumsum(v1) # cumulative sum

[1] 3 4 9 13

prod(v1) # product of all elements

[1] 60

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors/sequences – more advanced operations 3

v1

[1] 3 1 5 4

cumprod(v1) # cumulative product

[1] 3 3 15 60

cummin(v1) # minimum so far (up to i-th el.)

[1] 3 1 1 1

cummax(v1) # maximum up to i-th element

[1] 3 3 5 5

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors/sequences – pairwise comparisons

v1

[1] 3 1 5 4

v2

[1] 2 1 4 5

v1 <= v2 # direct comparison

[1] FALSE TRUE FALSE TRUE

pmin(v1, v2) # pairwise min

[1] 2 1 4 4

pmax(v1, v2) # pairwise max

[1] 3 1 5 5
Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Vectors/sequences – rank() and order()
rank() and order() are a pair of inverse functions.

v1 <- c(1, 3, 4, 5, 3, 2)
rank(v1) # show rank of each value (min has rank 1)

[1] 1.0 3.5 5.0 6.0 3.5 2.0

order(v1) # order of indices for a sorted vector

[1] 1 6 2 5 3 4

v1[order(v1)]

[1] 1 2 3 3 4 5

sort(v1)

[1] 1 2 3 3 4 5
Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Factors
To work with nominal values, R offers a special data type, a factor:

vec <- c('giraffe', 'donkey', 'liger',
'liger', 'giraffe', 'liger')

vec.f <- factor(vec)
summary(vec.f)

donkey giraffe liger
1 2 3

So donkey is coded as 1, giraffe as 2 and liger as 3. Coding is
alphabetical.

as.numeric(vec.f)

[1] 2 1 3 3 2 3

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Factors

You can also control the coding/mapping:

vec <- c('giraffe', 'donkey', 'liger',
'liger', 'giraffe', 'liger')

vec.f <- factor(vec, levels=c('donkey', 'giraffe',
'liger'),

labels=c('zonkey','Sophie','tigon'))
summary(vec.f)

zonkey Sophie tigon
1 2 3

A bit confusing, factors. . .

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Ordered

To work with ordinal scale (ordered) variables, one can also use
factors:

vec <- c('tiny', 'small', 'medium', 'large')
factor(vec) # rearranged alphabetically

[1] tiny small medium large
Levels: large medium small tiny

factor(vec, ordered=T) # order as provided

[1] tiny small medium large
Levels: large < medium < small < tiny

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

Matrices

We will talk about matrices in the next lecture. See you!

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 2

