
Elements of the R programming language – 1

Marcin Kierczak with Thomas Källman (labs)

21 September 2016

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Introduction

Today, we will talk about various elements of a programming
language and see how they are realized in R.

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Contents of the lecture

variables and their types
operators
vectors
numbers as vectors
strings as vectors
matrices
lists
data frames
objects
repeating actions: iteration and recursion
decision taking: control structures
functions in general
variable scope
core functions

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Variables
Creating a variable == assigning a name to data. . .

7 + 9

[1] 16

a <- 7
a

[1] 7

b <- 9
b

[1] 9

c <- a + b
c

[1] 16
Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Variables cted.

We are not constrained to numbers. . .

text1 <- 'a'
text2 <- 'qwerty'
text1

[1] "a"

text2

[1] "qwerty"

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Variables – naming conventions

How to write variable names?

What is legal/valid?
What is a good style?

A syntactically valid name consists of letters, numbers and the dot
or underline characters and starts with a letter or the dot not
followed by a number.

Names such as “.2way” are not valid, and neither are the so-called
reserved words.

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Reserved words

Reserved words, are:
if, else, repeat, while, function, for, in, next,
break, TRUE, FALSE, NULL, Inf, NaN, NA, NA_integer_,
NA_real_, NA_complex_, NA_character_

and you also cannot use: c, q, t, C, D, I

and you should not use: T, F

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Variables – good style

make them informative, e.g. genotypes instead of
fsjht45jkhsdf4,
use consistent notation across your code – the same naming
convention,
camelNotation vs. dot.notation vs. dash_notation
I used to use the camelNotation and the dot.notation and I’m
still hesitating :-),
do not give.them.too.long.names,
in the dot notation avoid my.variable.2, use my.variable2
instead,
there are certain customary names: tmp - for temporary
variables; cnt for counters; i,j,k within loops, pwd - for
password. . .

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Variables have types
We have already discussed the system of types in general. Now,
time to look at the types system in R.
A numeric that stores numbers of different types:

x = 41.99 # assign 41.99 to x
class(x)

[1] "numeric"

mode(x) # representation

[1] "numeric"

typeof(x)

[1] "double"

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Class, type, representation and soorage mode

1 class is the point of view of object-oriented programming in R.

x <- 1:3
class(x)

[1] "integer"

any generic function that has an “integer” method can be used.

2 typeof() gives the “type” of object from R’s point of view.
3 mode() gives the “type” of object from the point of view of

the S language.
4 storage.mode() is useful when passing R objects to compiled

code, e.g. C.

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Variables have types cted.

y = 12 # now assign an integer value to y
class(y) # still numeric

[1] "numeric"

typeof(y) # an integer, but still a double!

[1] "double"

Even integers are stored as double by default.
Numeric == double == real.

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Variables have types cted.

x <- as.integer(x) # type conversion, casting
typeof(x)

[1] "integer"

class(x)

[1] "integer"

is.integer(x)

[1] TRUE

One rarely works explicitly with integers though. . .
Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Be careful when casting

pi <- 3.1415926536 # assign approximation of pi to pi
pi

[1] 3.141593

pi <- as.integer(pi) # not-so-careful casting
pi

[1] 3

pi <- as.double(pi) # trying to rescue the situation
pi

[1] 3

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Casting is not rounding

as.integer(3.14)

[1] 3

as.integer(3.51)

[1] 3

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Ceiling, floor and a round corner

floor(3.51) # floor of 3.51

[1] 3

ceiling(3.51) # ceiling of 3.51

[1] 4

round(3.51, digits = 1) # round to one decimal

[1] 3.5

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

What happens if we cast a string to a number

as.numeric('4.5678')

[1] 4.5678

as.double('4.5678')

[1] 4.5678

as.numeric('R course is cool!')

Warning: NAs introduced by coercion

[1] NA

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Special values

-1/0 # Minus infinity

[1] -Inf

1/0 # Infinity

[1] Inf

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Special values cted.

112345^67890 # Also infinity for R

[1] Inf

1/2e78996543 # Zero for R

[1] 0

Inf - Inf # Not a Number

[1] NaN

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Complex number type
Core R supports complex numbers.

z = 7 + 4i # create a complex number
z

[1] 7+4i

class(z)

[1] "complex"

typeof(z)

[1] "complex"

is.complex(z)

[1] TRUE
Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Complex number type cted.

sqrt(-1) # not treated as cplx number

Warning in sqrt(-1): NaNs produced

[1] NaN

sqrt(-1 + 0i) # now a proper cplx number

[1] 0+1i

sqrt(as.complex(-1)) # an alternative way

[1] 0+1i

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Logical type

a <- 7 > 2
b <- 2 >= 7
a

[1] TRUE

b

[1] FALSE

class(a)

[1] "logical"

typeof(a)

[1] "logical"
Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Logical type cted.

R has three logical values: TRUE, FALSE and NA.

x <- c(NA, FALSE, TRUE)
names(x) <- as.character(x)
outer(x, x, "&") # AND table

<NA> FALSE TRUE
<NA> NA FALSE NA
FALSE FALSE FALSE FALSE
TRUE NA FALSE TRUE

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Logical type cted.

x <- TRUE
x

[1] TRUE

x <- T # also valid
x

[1] TRUE

is.logical(x)

[1] TRUE

typeof(x)

[1] "logical"
Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Logical as number
It is very important to remember that logical type is also a
numeric!

x <- TRUE
y <- FALSE
x + y

[1] 1

2 * x

[1] 2

x * y

[1] 0

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

A trap set up for you

Never ever use variable names as T or F. Why?

F <- T
T

[1] TRUE

F

[1] TRUE

Maybe applicable in politics, but not really in science. . .

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Character type
It is easy to work with characters and strings:

character <- 'c'
text <- 'This is my first sentence in R.'
text

[1] "This is my first sentence in R."

character

[1] "c"

class(character)

[1] "character"

typeof(text) # also of 'character' type

[1] "character"Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Character type

number <- 3.14
number.text <- as.character(number) # cast to char
number.text

[1] "3.14"

class(number.text)

[1] "character"

as.numeric(number.text) # and the other way round

[1] 3.14

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Basic string operations

text1 <- "John had a yellow "
text2 <- "submarine"
result <- paste(text1, text2, ".", sep='')
result

[1] "John had a yellow submarine."

sub("submarine", "cab", result)

[1] "John had a yellow cab."

substr(result, start = 1, stop = 5)

[1] "John "

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

Basic printing

txt <- "blue"
val <- 345.78
sprintf("The weight of a %s ball is %g g", txt, val)

[1] "The weight of a blue ball is 345.78 g"

Marcin Kierczak with Thomas Källman (labs) Elements of the R programming language – 1

