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Introduction

Statistics is a branch of science, more precisely a branch of mathe-
matics that is concerned with collection, analysis, interpretation, and
presentation of data. A very similar term, statistic denotes a single
measure, a number that is describing in a concise way some feature of
a data sample. Statistic is usually a number resulting from applica-
tion of a statistical procedure. Examples of a statistic include, sample
mean and standard deviation of a sample.

Basic statistics and statistical terms

Here, we introduce some fundamental concepts used in statistics.
We begin by describing distributions and samples. Distributions are
described by their parameters while samples are described by statis-
tics. Every distribution can be described by parameters belonging to
two classes: location parameters and dispersion parameters. Location
parameters include mean and median while dispersion parameters
include variance and standard deviation.

Mean

Mean is a location parameter measuring the central tendency of the
data. It is defined as a sum of all the values divided by the number of
observations:

µ =

∑
x

N

Population mean is denoted as µ while sample mean as X̄. Here, N is
the number of observations and

∑
x is the sum of all observed values.

Mean can be misleading when a distribution is skewed (non-
symmetrical) and can be greatly influenced by outliers. To remedy the
latter problem, other types of mean such as weighted mean or a mean
that does not take into account the extreme observations called the
Winsor mean are used. We, however, will not discuss these here.

Median

Median is another measure of the central tendency or a location pa-
rameter of a distribution. Unlike the mean, it is not taking into ac-
count all observations. Median is simply the middle value in the or-
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dered data series. If there is an odd number of data points, median
is easy to find. If there is an even number of data points, median is
defined as the mean of the two data points in the middle.

By comparing mean with median, we can tell something
about how skewed the distribution is. For a perfectly symmetrical
distribution median and mean are equal. For left-skewed distribution,
median is less than the mean. For right-skewed distributions, median
is greater than the mean.

Variance

Population variance is denoted as σ2 and sample variation as s. Vari-
ance measures dispersion of observations around the mean. The more
spread they are, the higher value of the variance. Population variance
is defined as:

σ2 =

∑
(x− µ)2

n

while sample variation is:

s2 =

∑
(x− x̄)2

n− 1

Why are we dividing by (n− 1) instead of dividing by n? We
want our sample variance s2 to be as accurate estimate of population
variance σ2 as possible. Imagine that we are estimating variance in
weight of sheep in a herd (population) of 2000 individuals using a
sample of 200 animals. It is very likely that we will miss in our sample
those few light or heavy individuals which would have, otherwise,
influenced our estimation of variance quite a lot (since they give very
large (x−x̄)2 term). Therefore we correct for this byusing n−1 instead
of n. Observe that for very small sample sizes subtraction of 1 has a
large effect on variance while for large sample sizes it has very minute
effect:

# A function to compute population variance.
pop.var <- function(x) {
sq.dev <- (x - mean(x))^2
pop.var <- sum(sq.dev) / length(x)
return(pop.var)

}
# We generate a population of sheep
# True population variance is 16
# so sd=4
pop <- rnorm(n=2000, mean=55, sd=4)
# Number of sampling events per sample size
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N <- 1000

compare.var <- function(pop, N, sample.size) {
s <- array(dim=N) # Sample variance (with correction)
sigma <- array(dim=N) # Population variance
for (i in 1:N) {
my.sample <- sample(pop, size=sample.size, replace=F)
s[i] <- var(my.sample)
sigma[i] <- pop.var(my.sample)

}
result <- c(median(s), median(sigma))
return(result)

}

# Actual simulation
sample.sizes <- c(5:100)
result <- c()
for (sample.size in sample.sizes) {
tmp <- compare.var(pop, N, sample.size)
new <- cbind(sample.size, s=tmp[1], sigma=tmp[2])
result <- rbind(result, new)

}
result <- as.data.frame(result)
tmp <- c(result$s, result$sigma)
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Figure 1: The effect of using n − 1 in
denominator of variance estimation.
Black dots – no correction, red dots –
corrected. True population variance –
darkgrey dotted line.

You can perhaps see that for small sample sizes, the effect of using
n− 1 instead of 1 is much larger!

Note that variance cannot take negative values,
simply because we are squaring the numerator. Often, a square root
of variance called standard deviation is used instead of variance itself.
Standard deviation (sd, SD, std.dev.) is denoted by σ for population
and by s for sample.

If two or more traits are measured using different
scales, variances cannot be directly compared due to scale effect.
Therefore, often variables to be compared are standardized so that
they follow the standard normal distribution N (0, 1) with X̄ = 0 and
s = 1. Standardization maps the actual values into the corresponding
z-scores which tell how many standard deviations away from the mean
a given observation is: zscore = (x− x̄)/s.
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Covariance

When looking at two variables, say x and y, it is often interesting to
know how similar the deviations from the mean of one variable are to
the deviations of the other variable. This is measured by covariance:

Covx,y =

∑
(x− x̄) · (y − ȳ)

n− 1

Observe that variance is a covariance of a variable with itself
– substitute (y − ȳ) with (x− x̄) to get variance. Similarly to variance,
covariance is scale dependent! Positive covariance means that y in-
creases with x, for the opposite situation, we have negative covariance.
When the two variables are orthogonal to each other (independent),
covariance equals zero.

Correlation

As mentioned above, covariance is scale dependent. It can, however,
easily be re-sacled to be bound between -1 and 1. This operation is
analoguous to standardization. Such re-scaling yields correlation:

Corx,y =
Covx,y√
s2x · s2y

To see what is the scale effect on covariance, look at the following
example:

w <- rnorm(100, mean=0, sd=1)
x <- 4 * jitter(w)
cov(w, x)

## [1] 3.658909

cor(w, x)

## [1] 1

y <- rnorm(100, mean=0, sd=10)
z <- 4 * jitter(y)
cov(y, z)

## [1] 458.0993

cor(y, z)

## [1] 1
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Statistical tests

Here, we will discuss some most common and useful statistical tests.
First, there is a very important distinction between two types of statis-
tical tests:

• parametric tests – they assume certain parameters of the popula-
tion and sample distribution. Usually these have to be normal and
µ and σ have to be known.

• non-parametric tests – they do not make assumptions about the
distributions.

Then – one may ask – why not to use non-parametric tests only?
The answer is that typically the parametric tests have higher power
than the non-parametric ones.

One-sample tests

First, let us sonsider tests where we are considering one sample. The
very first step is to check normality of the sample distribution using,
e.g. Shapiro-Wilk test:

data <- rnorm(n=100, mean=0, sd=1)
shapiro.test(data)

##
## Shapiro-Wilk normality test
##
## data: data
## W = 0.98046, p-value = 0.1443

First, we generated a sample of 100 random numbers
coming from the normal distribution N (0, 1) with mean equal to 0 and
standard deviation equal to 1. Next, we performed the Shapiro-Wilk
normality test. Our null hypothesis is that H0 : distribution is normal.
P-value obtained from the test is much greater than 0.05 which1 does 1 using significance level α = 5%
not give us a reason to reject the null hypothesis. Thus, we can say
that our sample is not significantly departing from normality. Now,
let us see what happens if we try to test a uniform distribution using
Shapiro-Wilk test:

data2 <- runif(100, min = 2, max = 4)
shapiro.test(data2)

##
## Shapiro-Wilk normality test
##
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## data: data2
## W = 0.96413, p-value = 0.008011

Now, p-value is less than 0.05 and gives us a reason to reject
the null. We can suspect the distribution is departing from normality.
Finally, let us compare the two samples using a quantile-quantile
(Q-Q) plot:
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Figure 2: Q-Q plots for data (top)
and data2 (bottom). Data points
on the left panel clearly follow the
straight line which is a sign of normal-
ity. This is not the case for datapoints
on the right panel. Shapiro-Wilk tests
confirmed this observation.

At the next step, one may wish to check whether the sample
comes from a population characterized by a given mean X̄. This can
be accomplished with a simple Student’s t-test.2

2 The t-statistics and t-test were
invented by William Sealy Gosset. He
was an employee of Guiness brewery
and invented this test to monitor
quality of their famous stout.

t.test(data, mu=1.1)

##
## One Sample t-test
##
## data: data
## t = -10.391, df = 99, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 1.1
## 95 percent confidence interval:
## -0.2515569 0.1818681
## sample estimates:
## mean of x
## -0.0348444

As we can see, very small value of p-value lets us reject our nill
hypothesis H0 : sample comes from population with mean X̄ = 1.1.
We can also see that the 95% confidence interval is between −0.294

and 0.144, i.e. the population mean from which the sample comes is
somewhere in this interval.

We can also ask another type of question: does our
sample come from a population with a given variance? To answer this
question, we will use the Z test:

critical <- 0.05
sigma <- 3
conf <- qnorm(1 - 0.5 * critical)
std.err <- sigma/sqrt(length(data))
conf.interval = mean(data) + c(-std.err * conf, std.err * conf)

Here, we a priori knew that variance in the population is σ =

3. Now, if the population mean µ is within the determined confidence
interval, we can conclude that sample comes from this population
N (µ, 3).
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Finally, let us use the non-parametric Wilcoxon test to see whether
our sample coming from the uniform distribution comes from a popu-
lation with mean µ = 3.

wilcox.test(data2, mu=3)

##
## Wilcoxon signed rank test with
## continuity correction
##
## data: data2
## V = 2752, p-value = 0.4361
## alternative hypothesis: true location is not equal to 3

As we can see, there is no reason to reject our null hypothesis: H0 :

sample comes from a population with µ = 3.

Two-sample tests

In this section we will consider two samples. We want to know whether
they come from the same population. We begin by testing whether
our two samples have homogenous variance. This can be done using
Sendecor F-test:

data3 <- rnorm(100, 0.2, 3)
data4 <- rnorm(100, 0.001, 1)
var.test(data, data3)

##
## F test to compare two variances
##
## data: data and data3
## F = 0.094207, num df = 99, denom df =
## 99, p-value < 2.2e-16
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.0633866 0.1400141
## sample estimates:
## ratio of variances
## 0.0942073

var.test(data, data4)

##
## F test to compare two variances
##
## data: data and data4
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## F = 1.4301, num df = 99, denom df = 99,
## p-value = 0.07665
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.9622111 2.1254193
## sample estimates:
## ratio of variances
## 1.430071

As we could expect (we know parameters of distributions used to
generate the data), data and data3 do not have homogenous vari-
ances while data and data data4 have. Now, we want to ask a question
whether data and data4 come from the same population:

t.test(data, data4)

##
## Welch Two Sample t-test
##
## data: data and data4
## t = -0.81119, df = 191.99, p-value =
## 0.4183
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3963058 0.1653238
## sample estimates:
## mean of x mean of y
## -0.0348444 0.0806466

Apparently, there is no reason to think (at α = 0.95) that the two
samples come from different populations. For data and data3, we
cannot apply t-test since the variance was not homogenous. We need
its non-parametric counterpart, U-Mann-Whitney test (implemented
in wilcox.test):

wilcox.test(data, data3)

##
## Wilcoxon rank sum test with continuity
## correction
##
## data: data and data3
## W = 4325, p-value = 0.09934
## alternative hypothesis: true location shift is not equal to 0

wilcox.test(data, data2)
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##
## Wilcoxon rank sum test with continuity
## correction
##
## data: data and data2
## W = 93, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0

Results are to be interpreted in the same way as in the previous tests.

Beyond two-sample tests

What if we have to compare more than two samples? Certinly, one
can perform a number of pairwise two-sample tests, but there are
other ways of doing it. First, homogeneity of variance for many sam-
ples can be tested using Bartlett’s test or Levene’s test:

data.new <- data.frame(data=c(data, data2, data3),
group=rep(1:3,each=length(data)))

bartlett.test(data~group, data.new)

##
## Bartlett test of homogeneity of
## variances
##
## data: data by group
## Bartlett's K-squared = 311.38, df = 2,
## p-value < 2.2e-16

library(car)
with(data.new, leveneTest(data, as.factor(group)))

## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 93.599 < 2.2e-16 ***
## 297
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can see that both tests give similar answer – there is no vari-
ance homogeneity between these three samples. This implies the use of
a non-parametric test to check whether all three samples come from a
population with a given mean. We will use Kruskal-Wallis test:

kruskal.test(data ~ group, data.new)

In this case, apparently not all the samples come from the same
population with the same mean.
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Usefulness of χ2 tests

Below, we will hava a closer look at a class of very useful tests based
on χ2 statistic. In general, χ2 tests are used when we consider counts
or proportions.

χ2 =
(Nexp −Nobs)

2

Nexp

The χ2 distribution is also relatively simple to derive by using sim-
ulations in R. Let us assume a population with known ratio of two
classes, e.g. population of a poll respondents who answered “yes” or
“no”” no to a particular question. We know the ratio of these cat-
egories in our population and start drawing samples of a given size
from the population. We would like to know how many times the
“yes” to “no” ratio in the sample matches the “yes” to “no” ratio in
the population. In the simulation below, we encode “yes” and “no” as
TRUE and FALSE respectively.

# A function to simulate chi square distribution
simulate.chi.sq <- function(pop, probs=c(0.5, 0.5),

sample.size=NULL) {
if (is.null(sample.size)) {

# By default sample size goes
# to 10% the population size
sample.sizes <- c(1:floor(.1 * pop.size))

}
sample.ind <- sample(1:1000, size=sample.size, rep=F)
my.sample <- pop[sample.ind]
exp <- sum(pop)/length(pop)
obs <- sum(my.sample)/length(my.sample)
chi.sq <- (exp - obs)^2/exp
chi.sq

}

# Simulate a population of 1000 individuals with 50:50 ratio.
pop <- sample(c(T,F), size=1000, replace=T, prob=c(.5,.5))
# Run simulation N times
N <- 10000
result <- NULL
for (i in 1:N) {
result <- rbind(result,

simulate.chi.sq(pop=pop,
probs=c(0.5, 0.5),
sample.size=30))

}
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The above simulation works as follows: first, we create a population of
“yes” and “no” values, with the probability of each value equal to 0.5.
Next, we sample 30 individuals and compute χ2 value for them. We
repeat such sampling 10 000 times and plot the frequency of χ2 values.
As you can see, the vast majority of the values is close to zero which
we expected: proportion of “yes” to “no” in the sample should be close
to the true proportion in the population. Based on this distribution,
we can set a confidence threshold so that only 5% of the χ2 values are
to the right of it. Thus, if we get our χ2 value above the threshold, we
can reject our H0 : proportion in the sample is the same as in the population

and be wrong only 5% of the times…

Tests for proportion

Say we have examined a Petri plate that was exposed for the environ-
ment of the main hall of our University for some time, than incubated
for 40h at 37C. We have counted 100 colonies of Escherichia coli and
30 colonies of Staphylococcus epidermidis. Does it give us reason to
say that S. epidermidis constitutes 25% of the population of bacteria
in the main hall? Disregard all the factors like other bacteria that may
grow optimally at a different temperature, lack of replicates etc. We
will use a χ2 test:

prop.test(30, 100, p=0.25)

##
## 1-sample proportions test with
## continuity correction
##
## data: 30 out of 100, null probability 0.25
## X-squared = 1.08, df = 1, p-value =
## 0.2987
## alternative hypothesis: true p is not equal to 0.25
## 95 percent confidence interval:
## 0.2145426 0.4010604
## sample estimates:
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## p
## 0.3

Apparently, we can say so. However, given the observed count, at
α = 95% the real proportion may be somewhere between 21% and
40%.

Well, this is also a handy tool when newspapers start serving us
exit-poll results. If they, say, write that they tested 100 people and 55
declared support for The Only Right candidate does it mean (s)he will
win?

prop.test(55, n=100)

##
## 1-sample proportions test with
## continuity correction
##
## data: 55 out of 100, null probability 0.5
## X-squared = 0.81, df = 1, p-value =
## 0.3681
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.4475426 0.6485719
## sample estimates:
## p
## 0.55

Well, it gives them right to say that the candidate will get from
45% to 65% of the votes…

Testing whether samples come from one population

We may also ask whether the samples come from the same population.
Let’s imagine that we got exit-poll results from 3 more places and
we are wondering whether the structure of support is the same in all
the places. Say, we got the following result: * Site 1 – 55 out of 100
declared support. * Site 2 – 75 out of 150 declared support. * Site 3
– 455 out of 1000 declared support. * Site 4 – 45 out of 87 declared
support. We use the same test for proportions as before:

votes <- c(55, 75, 455, 45)
votes.tot <- c(100, 150, 1000, 87)
prop.test(votes, votes.tot)

##
## 4-sample test for equality of
## proportions without continuity
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## correction
##
## data: votes out of votes.tot
## X-squared = 4.7848, df = 3, p-value =
## 0.1883
## alternative hypothesis: two.sided
## sample estimates:
## prop 1 prop 2 prop 3 prop 4
## 0.5500000 0.5000000 0.4550000 0.5172414

It seems the results come from the same population.

Goodness-of-fit test

Statistical tests can be very useful when visiting Las Vegas, Monte
Carlo or when simply playing dice with a stranger. We may easily
detect if someone is cheating. Consider a series of results coming from
throwing a single dice. We got: * one - 7 times, * two - 14 times, *
three - 9 times, * four - 11 times, * five - 15 times, * six - 5 times,

Now, we are wondering whether the dice is fair…

results <- c(7,14,9,11,15,5)
probs <- rep(1/6, 6)
chisq.test(x=results, p=probs)

##
## Chi-squared test for given
## probabilities
##
## data: results
## X-squared = 7.5574, df = 5, p-value =
## 0.1824

Well, it seems we can safely continue playing. Alea iacta est…}
Here we performed a goodness-of-fit test, checking whether the dis-
tribution of our results fits the uniform distribution of 1

6 for each
outcome that we expect for a fair dice.

χ2 test for independence

Say that we are wondering whether a new drug has any effect. We
can administer drug to a group of N randomly selected patients and
administer placebo to the same N number of randomly chosen patients.
Now, imagine that there three possible outcomes observable after
some time of treatment: * patient got better * no change * patient
got worse We can use the χ2 test for independence to see whether
treatment has any effect:
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# Treated group
group1 <- c(21, 39, 40)
group2 <- c(2, 45, 53)
data <- data.frame(group1, group2)
chisq.test(data)

As we can see, we can reject H0 : group1 and group2 are not independent!
This means there is a difference between the “treated” and the placebo
group.

Restoring normality

Sometimes you can restore normality of your variable x by using one
of the transformations specified in this document.
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