

Single cell RNA sequencing: A brief introduction

Åsa Björklund NBIS/Uppsala University asa.bjorklund@scilifelab.se

Outline

- Overview of scRNA-seq:
 - Why scRNAseq?
 - How is it done?
 - Transcriptional bursting
 - Spike-in RNAs
- Data analysis:
 - Overview of main steps
 - Examples of tools
- Recent developments

Between tissues

- Cell-type compositions
- Altered transcription in matched celltypes

(Sandberg, Nature Methods 2014)

Developmental progression

- Transitions during differentiation
- Lineage decisions

(Kuman et al. Development, 2017)

Main applications:

- Understanding heterogeneous tissues Atlas

 Identifying cell types in a tissue
- Changes in cellular composition and cellular states.
 - Upon a treatment
 - With time
 - Between healthy and disease
- Dissection of temporal changes Trajectories
 - Understand the development of cell types

How is it done?

Single Cell RNA Sequencing Workflow

Unique molecular identifiers - UMIs

auk

2018

(http://mccarrolllab.com/dropseq/)

Method developments

🕻 auk 🕻

(Svensson et al. Nature Protocols 2018)

Transcriptional bursting

- Burst frequency and size is correlated with mRNA abundance but may differ per gene
- Many TFs have low expression and low burst frequency and will only be detected in a fraction of the cells

Example data - mouse bone-marrow-derived dendritic cells

⁽Shalek et al. Nature 2014)

RaukR

2018

Bursting, drop-outs and amplification bias

Problems compared to bulk RNA-seq

- Transcriptional bursting
- Drop-out rates
- Amplification bias
- Background noise
- Bias due to cell-cycle, cell size and other factors
- Often clear batch effects
- Zero-inflated data different distribution compared to bulk RNAseq

(Karchenko et al. Nature Methods 2014)

What can go wrong?

Single Cell RNA Sequencing Workflow

Spike-in RNAs

- Addition of external controls
- ERCC spike-in most widely used, consists of 48 or 96 mRNAs at 17 different concentrations.
- Important to add equal amounts to each cell, preferably in the lysis buffer.

(Vallejos et al. PLOS Comp Biol 2015)

Spike-in RNAs

Spike-ins can be used to model:

- Technical noise
- Drop-out rates
- Starting amount of RNA in the cell
- Data normalization

Spike-in RNAs

(Tung et al. Scientific Reports 2017)

QC-metrics

- Starting amount of RNA
 - Number of reads
 - Mapping statistics (% uniquely mapping, fraction of exon mapping etc.)
 - Number of detected genes
 - Spike-in ratio
- RNA degradation:
 - 3' bias for full length methods like SmartSeq2
- Success of library prep:
 - Spike-in detection
- Quality of the cell
 - Mitochondrial read fraction
 - rRNA read fraction
 - Pairwise correlation to other cells
- Duplicate/multiple cells
 - High number of detected genes

How to filter cells

- Normally, most of these qc-metrics 50 40 80 will show the same 20 0 trends, so it could be sensible to use a combination of 60 40 20 measures. 0
- Look at the distributions before deciding on cutoffs.

 Can use PCA based on all QC-metrics to identify outlier cells.

(Scater package)

Deciding on cutoffs for filtering

- Do you have a homogeneous population of cells with similar sizes?
- Is it possible that you will remove cells from a smaller celltype (e.g. red blood cells, t-cells)
- Examine PCA/tSNE before/after filtering and make a judgment on whether to remove more/less cells.

Detecting duplicate/multiple cells

- High number of detected genes can be a sign of multiple cells
 - But, beware so that you do not remove all cells from a larger celltype.
- After clustering check if you have cells with signatures from multiple clusters.
- A combination of those 2 features would indicate duplicates.

Data normalization

- Controlling for gene length RPKMs, FPKM, TPMs
- Size factors from:
 - DESeq TMM, CPM
 - Deconvolution method (scran package) Deals with the problem of vary large numbers of zeros by pooling cells together calculating a normalization for the sum of each pool.
- Error models in SCDE package based on pairwise comparisons between cells, drop-out rates are estimated.
- Census algorithm to convert TPM to relative transcript counts.

Batch normalization

- Technical batches:
 - Dissociation batch
 - Library prep
 - Sequencing run
- Biological batches:
 - Cell culture
 - Animal
 - Patient
- Often clear biological variation between human samples.

Check for batch effects in PCA

T75

Scater package

Batch normalization with SVA function ComBat

Color by donor

(Björklund et al. Nature Immunology 2016)

Combining different batches

- SVA ComBat function
- Seurat
 - ScaleData linear model or generalized linear model (poisson, negative binomial)
 - Correlated Component Analysis (CCA)
- SCDE pagoda.subtract.aspect removes weighted projection of the expression matrix onto a specified aspect
- mnnCorrect based on the detection of mutual nearest neighbors in the high-dimensional expression space

Other Methods for Batch Effects Corrections MNN SEURAT

SCMAP

Remove other unwanted confounders

- Cell size / Number of detected genes
- Cell cycle
- Most methods use linear regression, implemented in SCDE, Seurat, scran etc.

Color = CC phase Shape = cell type

(ccRemover – Barron & Li, Sci. Reports 2016)

Cell Cycle Phase Assignment

Cyclone - Pre-trained classifier looks at pairs of genes having difference in expression that changes sign from phase to phase of cell cycle

PCA PLOT: DECONVOLUTION COUNTS

tSNE: DECONVOLUTION COUNTS

Feature (gene) selection

- In most cases, all genes are not used in analysis.
- Filtering based on:
 - Genes expressed over X in Y cells.
 - Top variable genes implemented in most packages
 - Filter out genes with correlation to few other genes
 - Prior knowledge / annotation
 - DE genes from bulk experiments
 - Top PCA loadings
- Especially for trajectory analysis important to build the trajectories on a relevant gene set

Spike-in RNAs Finding biologically variable genes

Decompose variance of each gene into biological and technical component. Using spike-ins to model technical variation

 CV^2 = standard deviation / mean ^2

(Brennecke et al. Nature Methods 2013, Scran tutoral)

Top variable genes

Seurat uses Dispersion vs Average expression and you define cutoffs for x & y to select genes

Average expression

Visualization - Dimensionality

ICA

(Moignard et al. Nature Biotech 2015)

t-SNE – t-distributed stochastic neighbor embedding

Conserve pairwise distances in n-dimensional PCA space to 2D in local neighborhoods

(Björklund et al. Nature Immunology 2016)

Clustering

- Classical clustering methods
 - Hierarchical
 - k-means clustering
- Biclustering
 - WGCNA
 - BackSPIN
- Graph based clustering
 - SNNCliq
 - Seurat
 - Pagoda2

Different distance measures

- Most commonly used in scRNA-seq:
 - Euclidean distance in multidimensional space (often with a reduced gene set)
 - Euclidean distance in PCA, tSNE or other reduced space
 - Inverted pairwise correlations (1-correlation)

Clustering

- About 1 paper/week with a new method for clustering single cells
- Consensus from several methods increases confidence in separation.
- Key challenges:
 - Deciding on the true number of clusters
 - Separation of true clusters from technical artifacts

Some toolkits for scRNAseq analysis

- Scater
- Scran
- Seurat
- SCDE
- Monocle

- Single Cell Experiment class for scRNAseq data:
 - Assays counts, logcounts, tpms etc.
 - Reduced dimensions PCA, tSNE, diffusion map
 - Spike in controls
 - Meta data
 - Feature data
- Contains functions for:
 - Visualization
 - Quality control, check for batch effects.
 - Normalization

SCRAN – Single Cell RNA ANalisys

- Uses SingleCellExperiment class
- Includes cyclone method for predicting cell cycle phase.
- Includes Basics deconvolution strategy for size factors.
- Batch effect correction with mnnCorrect.
- Detection of variable genes by deconvolution of technical and biological variance.
- Also contains method for SNN graphs

http://bioconductor.org/packages/devel/bioc/ vignettes/scran/inst/doc/scran.html

Single Cell Consensus Clustering – SC3

(Kiselev et al Nat. Methods 2017)

Single Cell Consensus Clustering – SC3

- 1. Gene filtering rare and ubiquitous genes
- 2. Distance matrices (DM) Euklidean, Spearman, Pearson
- 3. Transformation of DM with PCA or Laplacian
- 4. K-means clustering with first *d* eigenvectors
- Consensus clustering distance 1/0 for cells in same/ different clusters -> hierarchical clustering on average distances.

Differential expression with nonparametric Kruskal–Wallis test.

Marker genes with areas under the ROC curve (AUROC) from 100 permutations of cell cluster labels and P-values from Wilcoxon signed-rank test.

Pagoda – Pathway And Geneset OverDispersion Analysis

Implemented in the SCDE package

7. focus on a subpopulation of cells, control for undesired aspects of heterogeneity

(Fan et al. Nature Methods 2016)

Pagoda – Pathway And Geneset

OverDispersion Analysis

- Helps with biological interpretation of data
- Important to have good and relevant gene sets
- High memory consumption when running Pagoda
- Also has methods for removing batch effect, detected genes, cell cycle etc

(Fan et al. *Nature Methods* 2016)

Pagoda2

- Similar error modelling
- Now include KNN graph clustering
- Can visualize gene sets.
- https://github.com/hms-dbmi/pagoda2

Seurat

- Developed for drop-seq analysis compatible with 10X output files. But works also for other types of data.
- Contains function for
 - Data normalization
 - Detection of variable genes
 - Regression of batch effects and other confounders
 - JackStraw to detect significant principal components
 - tSNE and other dimensionality reduction techniques
 - Clustering based on SNN graphs
 - Many different methods for Differential expression

(http://satijalab.org/seurat/)

Seurat - FindClusters

- First construct a KNN (k-nearest neighbor) graph based on the euclidean distance in PCA space.
 - Select which principal components to include
- Refine the edge weights between any two cells based on the shared overlap in their local neighborhoods (Jaccard distance).
- To cluster the cells, modularity optimization techniques to iteratively group cells together.
- **OBS!** Earlier versions of Seurat uses "spectral tSNE" and DBScan density clustering.

Seurat

- Also contains functions for:
 - Spatial reconstruction of single cell data using *in* situ references (Zebrafish embryos)
 - Integrated analysis across platforms with Correlated Component Analysis (CCA)
 - Analysis of multimodal datasets (e.g. RNA + protein)

Loupe – Cell Browser, from 10X Genomics

> Cluster 1 (1623) Cluster 10 (423) Cluster 11 (403) Cluster 12 (390) Cluster 13 (369) Cluster 14 (360) Split View E Significant Genes

?auk

2018

Which clustering method is best?

- Depends on the input data
- Consistency between several methods gives confidence that the clustering is robust
- The clustering method that is most consistent

 best bootstrap values is not always best
- In a simple case where you have clearly distinct celltypes, simple hierarchical clustering based on euklidean or correlation distances will work fine.

How many clusters do you really have?

- It is hard to know when to stop clustering you can always split the cells more times.
- Can use:
 - Do you get any/many significant DE genes from the next split?
 - Some tools have automated predictions for number of clusters – may not always be biologically relevant
- Always check back to QC-data is what your splitting mainly related to batches, qc-measures (especially detected genes)

Check QC data

Pseudotime/trajectory analysis

Rauk

2018

(Kieran et al. Plos Comp Biol. 2017)

Pseudotime/trajectory analysis

(Cannoodt et al. EJI 2016)

Trajectory tools

(Cannoodt et al. EJI 2016)

Should you run trajectory analysis?

- Are you sure that you have a developmental trajectory?
- Do you believe that you have branching in your trajectory?
- Do you have enough cells along the trajectory?
- Be aware, any dataset can be forced into a trajectory without any biological meaning!
- First make sure that gene set and dimensionality reduction captures what you expect.

Monocle2 – reversed graph enbedding

(Qiu et al. Nat Methods 2017)

(LaManno et al. BioRxiv 2017)

Differential expression in scRNAseq data

- scRNAseq is affected by higher noise (technical and biological)
- Usually scRNAseq data have many more replicates, can make use of the distributions for each gene, not only the mean + dispersion.
- What is used:
 - Bulk methods: edgeR, limma, DESeq, SAMseq
 - SC methods: MAST, SCDE, Monocle, D3E
 - Classical tests: Kruskal-Wallis, ROTS, t-test, RandomForest classifier, LRT, Kolmogorov-Smirnov test, Wilcox-rank-sum test, etc.

	Short name	Method	Software version	Input	Available from	Reference
	BPSC	BPSC	BPSC 0.99.0/1	CPM	GitHub	[11]
	D3E	D3E	D3E 1.0	raw counts	GitHub	[12]
	DESeq2	DESeq2	DESeq2 1.14.1	raw counts	Bioconductor	[13]
	DESeq2betapFALSE	DESeq2 without beta prior	DESeq2 1.14.1	raw counts	Bioconductor	[13]
	DESeq2census	DESeq2	DESeq2 1.14.1	Census counts	Bioconductor	[13]
	DESeq2nofilt	DESeq2 without the built-in in- dependent filtering	DESeq2 1.14.1	raw counts	Bioconductor	[13]
	DEsingle	DEsingle	DEsingle 0.1.0	raw counts	GitHub	[14]
	edgeRLRT	edgeR/LRT	edgeR 3.19.1	raw counts	Bioconductor	[15-17]
	edgeRLRTcensus	edgeR/LRT	edgeR 3.19.1	Census counts	Bioconductor	[15-17]
	edgeRLRTdeconv	edgeR/LRT with deconvolution normalization	edgeR 3.19.1, scran 1.2.0	raw counts	Bioconductor	[15, 17, 18]
	edgeRLRTrobust	edgeR/LRT with robust disper- sion estimation	edgeR 3.19.1	raw counts	Bioconductor	[15-17, 19]
	edgeRQLF	edgeR/QLF	edgeR 3.19.1	raw counts	Bioconductor	[15, 16, 20]
	edgeRQLFDetRate	edgeR/QLF with cellular detec- tion rate as covariate	edgeR 3.19.1	raw counts	Bioconductor	[15, 16, 20]
	limmatrend	limma-trend	limma 3.30.13	$log_2(CPM)$	Bioconductor	[21, 22]
	MASTcpm	MAST	MAST 1.0.5	$log_2(CPM+1)$	Bioconductor	[23]
	MASTcpmDetRate	MAST with cellular detection rate as covariate	MAST 1.0.5	$log_2(CPM+1)$	Bioconductor	[23]
	MASTtpm	MAST	MAST 1.0.5	log ₂ (TPM+1)	Bioconductor	[23]
	MASTtpmDetRate	MAST with cellular detection rate as covariate	MAST 1.0.5	$log_2(TPM+1)$	Bioconductor	[23]
	metagenomeSeq	metagenomeSeq	metagenomeSeq 1.16.0	raw counts	Bioconductor	[24]
	monocle	monocle (tobit)	monocle 2.2.0	TPM	Bioconductor	[25]
	monoclecensus	monocle (Negative Binomial)	monocle 2.2.0	Census counts	Bioconductor	[25, 26]
	monoclecount	monocle (Negative Binomial)	monocle 2.2.0	raw counts	Bioconductor	[25]
	NODES	NODES	NODES 0.0.0.9010	raw counts	Author- provided link	[27]
	ROTScpm	ROTS	ROTS 1.2.0	CPM	Bioconductor	[28, 29]
	ROTStpm	ROTS	ROTS 1.2.0	TPM	Bioconductor	[28, 29]
	ROTSvoom	ROTS	ROTS 1.2.0	voom-transformed raw counts	Bioconductor	[28, 29]
	SAMseq	SAMseq	samr 2.0	raw counts	CRAN	[30]
	scDD	scDD	scDD 1.0.0	raw counts	Bioconductor	[31]
	SCDE	SCDE	scde 2.2.0	raw counts	Bioconductor	[32]
	SeuratBimod	Seurat (bimod test)	Seurat 1.4.0.7	raw counts	GitHub	[33, 34]
	SeuratBimodnofilt	Seurat (bimod test) without the internal filtering	Seurat 1.4.0.7	raw counts	GitHub	[33, 34]
	SeuratBimodIsExpr2	Seurat (bimod test) with internal expression threshold set to 2	Seurat 1.4.0.7	raw counts	GitHub	[33, 34]
	SeuratTobit	Seurat (tobit test)	Seurat 1.4.0.7	TPM	GitHub	[25, 33]
•	ttest	t-test	stats (R v 3.3)	TMM-normalized TPM	CRAN	[16, 35]
	voomlimma	voom-limma	limma 3.30.13	raw counts	Bioconductor	[21, 22]
	Wilcoxon	Wilcoxon test	stats (R v 3.3)	TMM-normalized TPM	CRAN	[16, 36]

(Soneson & Robinson*, Nature Methods* 2018)

R^{auk}R 2018

- EdgeR & Limma seem to work well
- MAST ranked high among scRNA-seq methods

(Soneson & Robinson, Nature Methods 2018)

What more can you do?

- Allelic expression
- X chromosome inactivation
- Variant calling
- Copy-number variation
- Alternative splicing

Combination methods

- CITE-seq & REAP-seq barcoded antibodies to measure protein markers + RNA-seq
- Proximity ligation assay (PLA) + RNA-seq internal proteins
- T-cell receptor VD(J) profiling + RNA-seq
- Genome + RNA (WGS, ATAC-seq, Bis-seq)
- CRISPR-mediated perturbations + RNA-seq
- Lineage tracing with CRISPR barcodes
- ncRNA methods single cell small RNA libraries and total RNA libraries
- Combination with spatial methos (*in situs*, smRNA fish, Spatial transcriptomics)

Resources

- Tutorials and lectures from our NBIS course: <u>https://nbisweden.github.io/workshop-scRNAseq/</u>
- Other good course at: <u>https://hemberg-lab.github.io/scRNA.seq.course/</u>
- Many of the packages have very thorough tutorials on their websites
- Repo with scRNA-seq tools:
 <u>https://github.com/seandavi/awesome-single-cell</u>
- Single cell experiment objects for many datasets: <u>https://hemberg-lab.github.io/scRNA.seq.datasets/</u>
- Conquer datasets salmon pipeline for many different datasets: <u>http://imlspenticton.uzh.ch:3838/conquer/</u>

Presentation of tutorials

- Seurat Single-cell RNA-seq data workflow with Seurat including filtering, QC and clustering.
- Scater Quality Control with Scater package and batch correction with ComBat
- SC3 Single-cell RNA-seq concensus clustering and with the SC3 package.

(Hazenberg & Spitz, Blood 2014)

Innate lymphoid cells (ILCs)

(Björklund *et al. Nature Immunology* 2016)