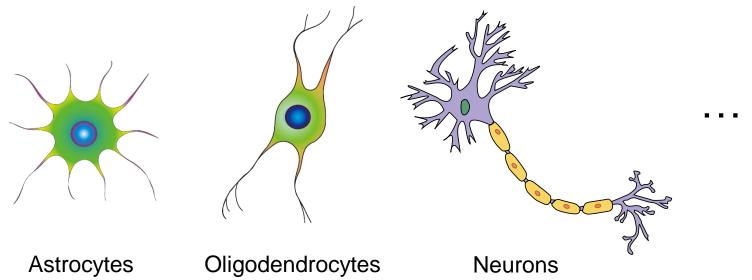
SSAM: Spot-based spatial cell type analysis with multidimensional mRNA locations

Jeongbin Park Digital Health Center Berlin Institute of Health & Charité University Hospital

Background: NHGRI

What is cell type?

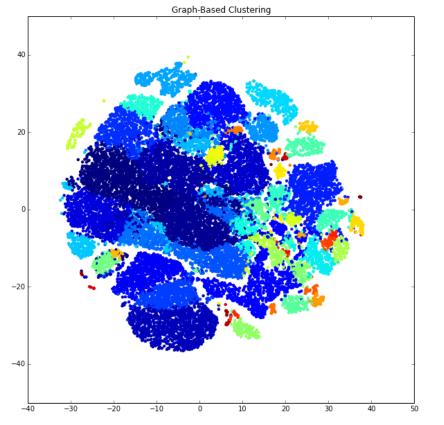


Cells with different shapes and functions

-> Cells with different gene expressions profiles?

* Cell type images from Wikimedia common

Cell type identification in scRNAseq data

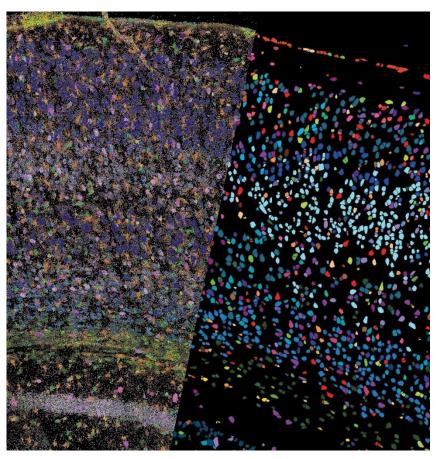


1.3 million mouse brain cells dataset (https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons)

• How?

- Sequencing individual cell
- Clustering cells
- Identifying cell types
- scRNAseq challenges
 - Dropouts
 - Batch effects

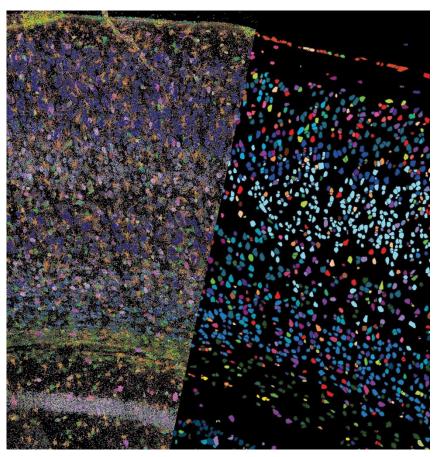
Cell type identification in multiplexed FISH data



osmFISH dataset (left: mRNAs, right: cell types)

- How?
 - Cell segmentation
 - Counting mRNAs within each cell's border
 - Clustering cells
 - Identifying cell types
- Multiplexed FISH
 - Sensitive and accurate
 - Location of cell types

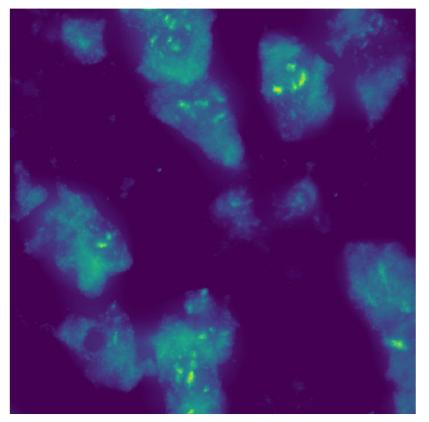
Cell type identification in multiplexed FISH data



osmFISH dataset (left: mRNAs, right: cell types)

- How?
 - Cell segmentation
 - Counting mRNAs within each cell's border
 - Clustering cells
 - Identifying cell types
- Multiplexed FISH
 - Sensitive and accurate
 - Location of cell types

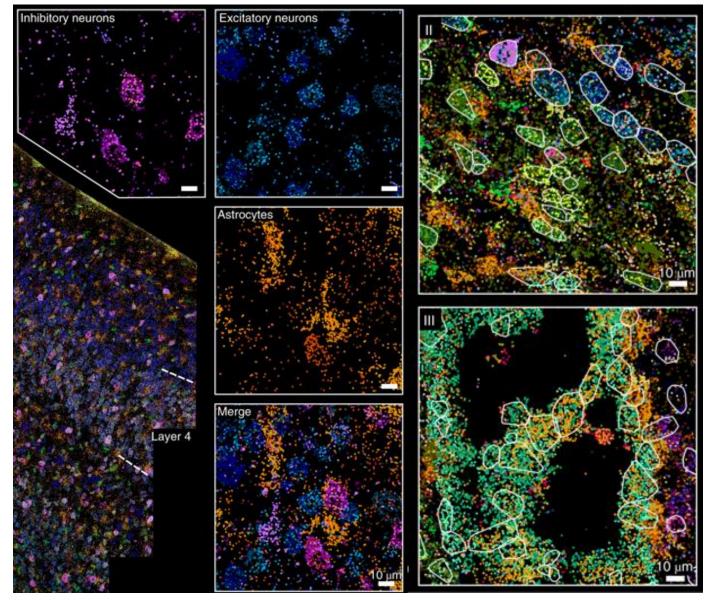
Problem: Segmentation is not easy



Poly-A image from osmFISH dataset

- Complex cell shapes
- Requires additional images (DAPI, poly-A, etc.)
- Unclear cell borders due to imaging problem

Nature Methods 15, 932–935 (2018)



mRNA distribution already looks very similar to cell shapes... 6

SSAM (Spot-based Spatial cell type Analysis with Multidimensional mRNA locations)

- Spot-based spatial cell type calling
- Cell type calling without segmentation
- Works with multidimensional mRNA locations (in 2D or 3D)
- Easy to use Python package

Requirements

- Location of mRNA (in 2D or 3D)
- Uniform distribution of mRNA within a cell
 - i.e. Density of mRNAs of a certain gene should be similar at any point in a cell

BERLIN

Kernel Density Estimation

 Estimate density by summing up kernels at i-th mRNA position

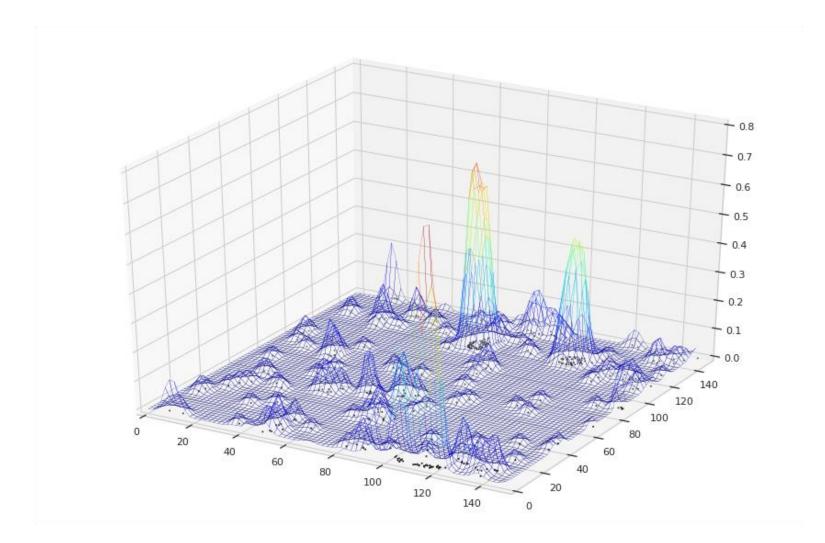
$$\hat{\sigma}_h(\vec{x}) = \frac{1}{Nh} \sum_{i}^{N} K(\frac{\vec{x} - \vec{x}_i}{h})$$

- Where σ is density, N is number of mRNAs, K is kernel, h is bandwidth, xi is position of i-th mRNA
- We used Gaussian kernel for simplicity:

$$K_{gaussian}(\vec{x}) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}|\vec{x}|^2\right)$$

 Select h, which makes 2*FWHM(σ) ~ cell radius (h=2, assuming that cell radius ~ 10um)

Kernel Density Estimation

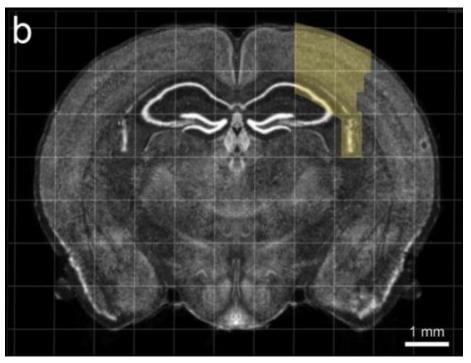


CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

OF HEALTH Charité & Max Delbrück Cente

BERLIN INSTITUTE

Data analysis example - osmFISH

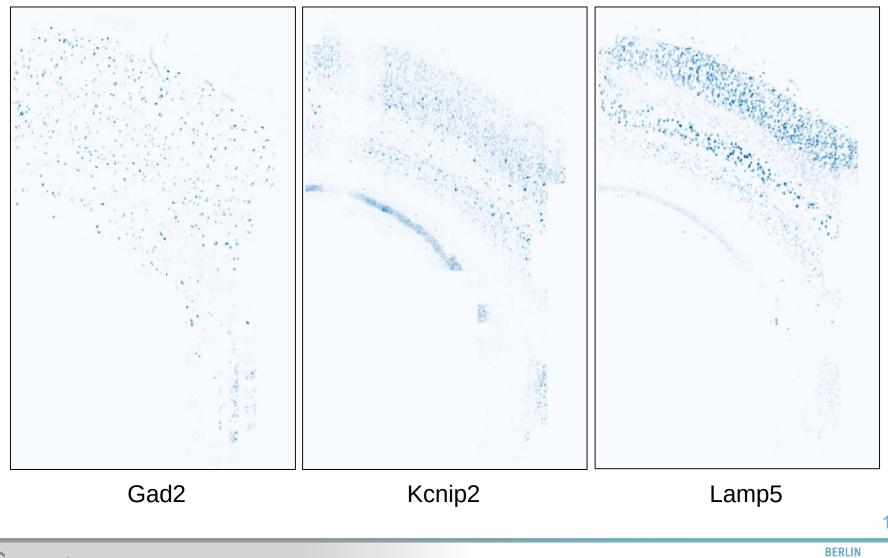


Nature Methods 15, 932–935 (2018)

- Mouse somatosensory cortex
- 2080 x 3380 um (2D)
- 33 genes

11

Kernel Density Estimation (osmFISH dataset)

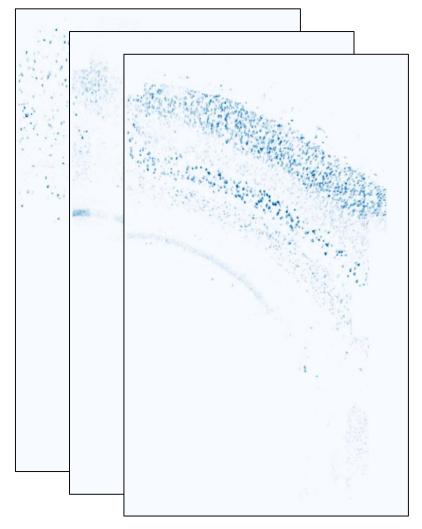


CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

12

INSTITUTE

Kernel Density Estimation (osmFISH dataset)



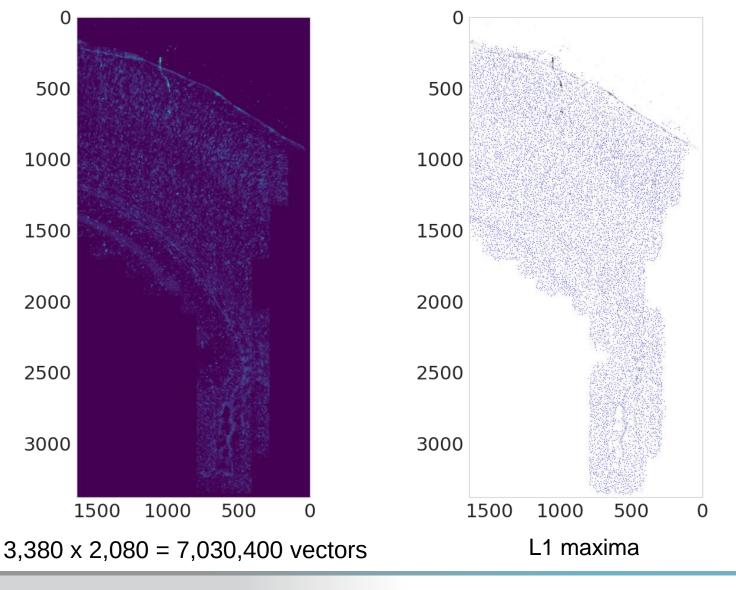
- Stack all genes
- \rightarrow 33 dimensional vector field
- •i-th gene's expression (E_i):

 $\hat{E}_i(\vec{x}) = \hat{\sigma}_i(\vec{x}) N_i$

where

 E_i : expression of i – th gene σ_i : estimated density of i – th gene N_i : number of mRNAs of i – th gene

Selection of representative vectors

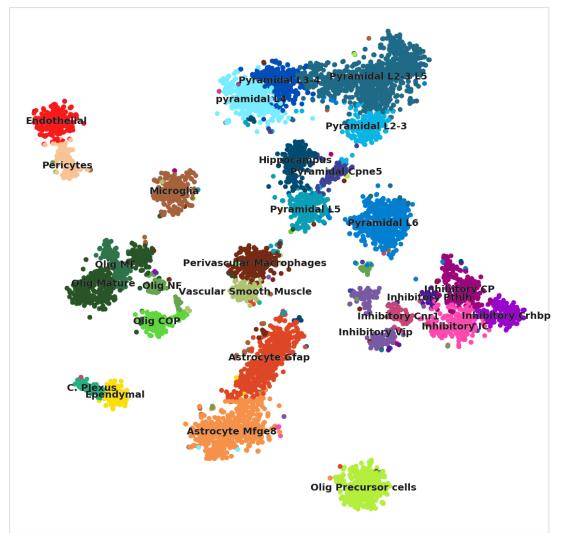


CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

14

BERLIN

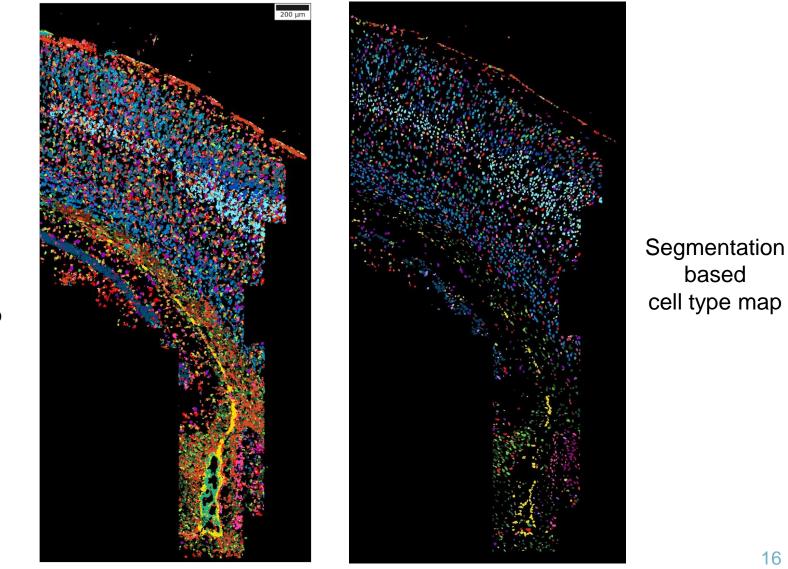
Clustering



SNN (weighted by Jaccard index) + Louvain algorithm, 28 clusters

15

Side-by-side comparison of cell type map



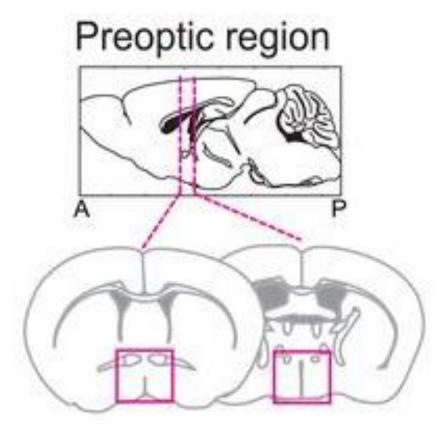
SSAM generated cell type map

16 BERLIN INSTITUTE

OF HEALTH

based

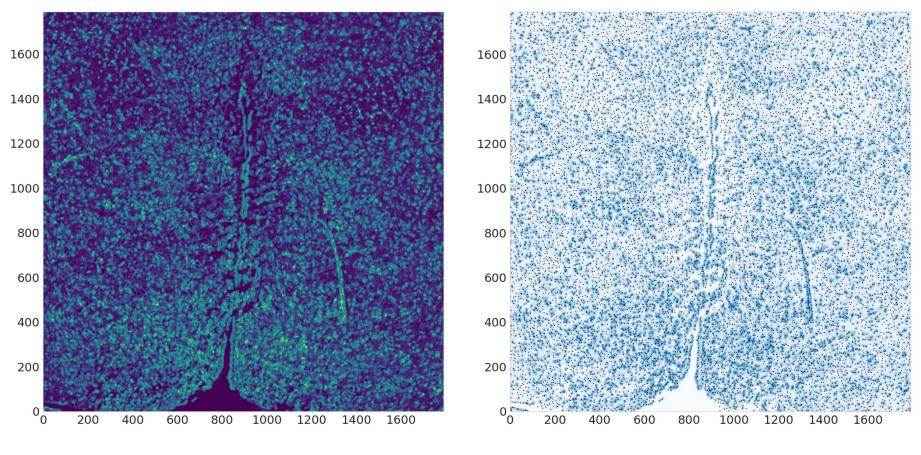
MERFISH data



Moffit et al. Science 16 Nov 2018: Vol. 362, Issue 6416, eaau5324

- Mouse hypothalamic preoptic region
- 1790 x 1790 x 9 um
 (3D)
- 135 genes

Selection of representative vectors

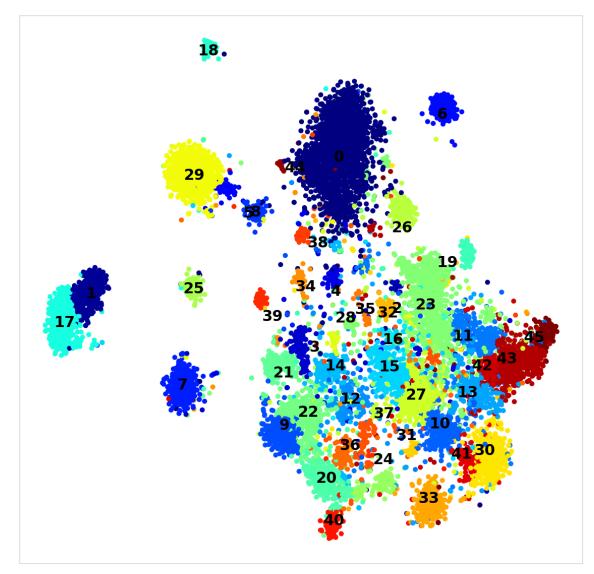


1,790 x 1,790 x 9 = 28,836,900 vectors (image is at z=4um)

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

L1 maxima

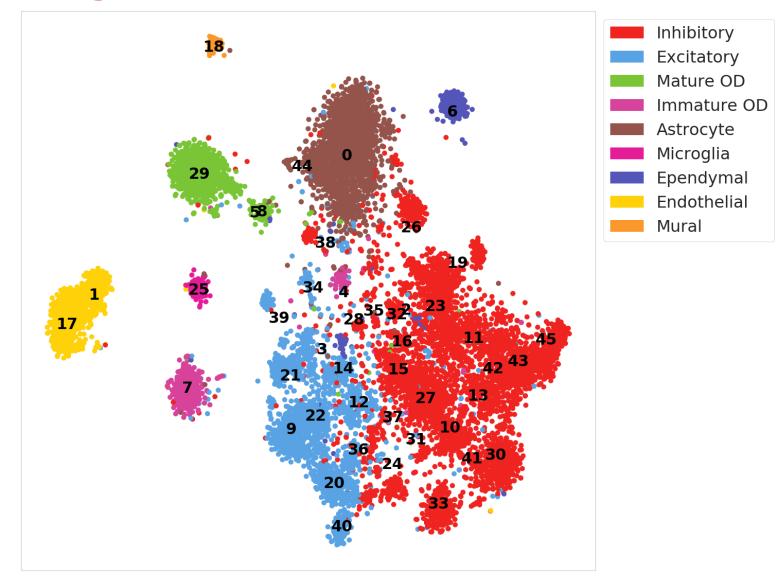
Clustering



BERLIN INSTITUTE OF HEALTH Charité & Max Delbrück Cente

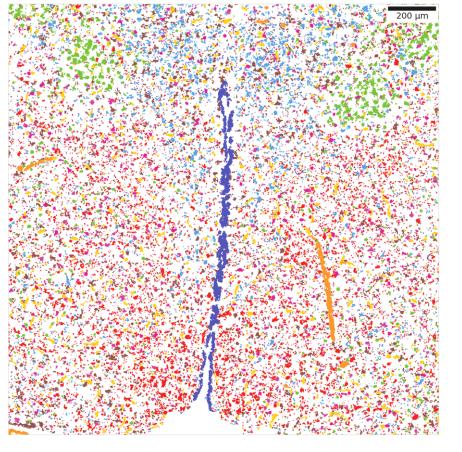
19

Clustering

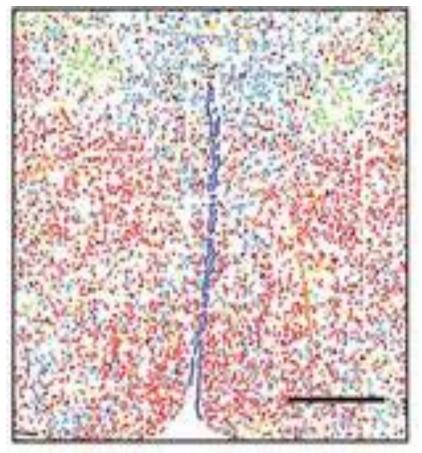


20

SSAM generated cell type map



Segmentation-based cell type map (Moffit, *et al.*)



At z = 4um

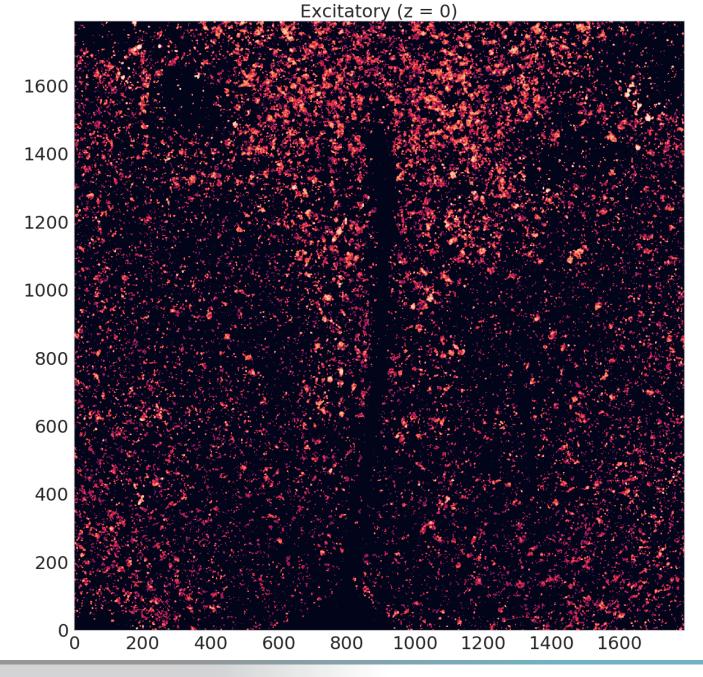
CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

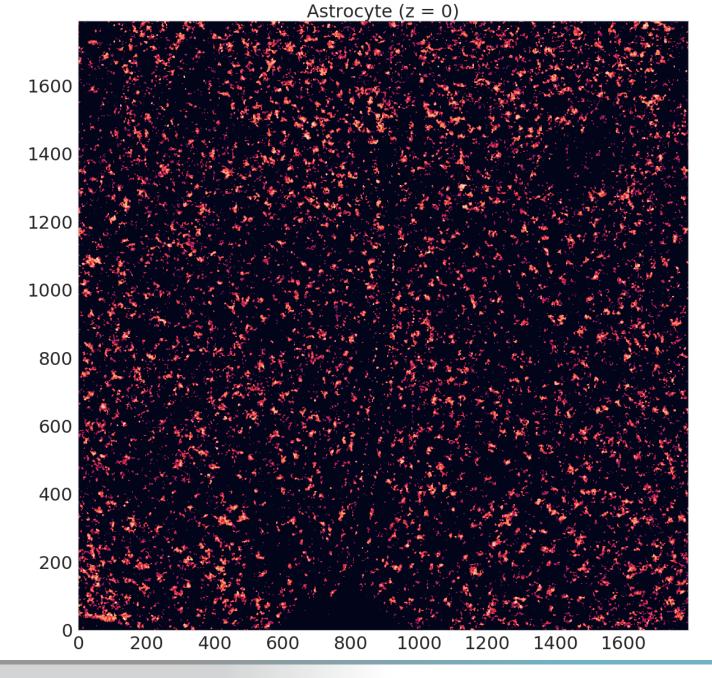
3D cell type map

- Movies, sweeping z directions
 - Excitatory neurons
 - Astrocytes

BERLIN

OF HEALTH





- We developed SSAM, a segmentation-free method to call cell types
- SSAM can reproduce prior results, also provides more detailed structure of cell types in tissue

Acknowledgements

• Wonyl Choi (Boston U.)

BIH/Charite, Berlin

- Naveed Ishaque
- Roland Eils
- Luca Tosti
- Christian Conrad

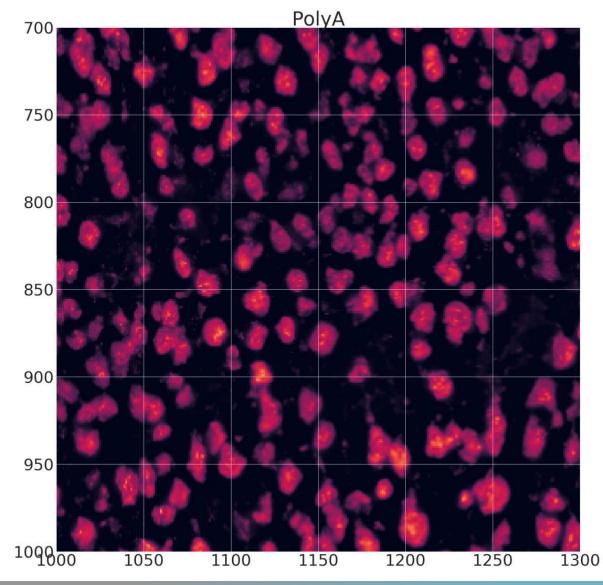
DKFZ, Heidelberg

- Daniel Hübschmann
- Matthias Schlesner
- Zuguang Gu
- Nagarajan Paramasivam
- Stephen Krämer

Karolinska (Linnarsson Lab), Stockholm

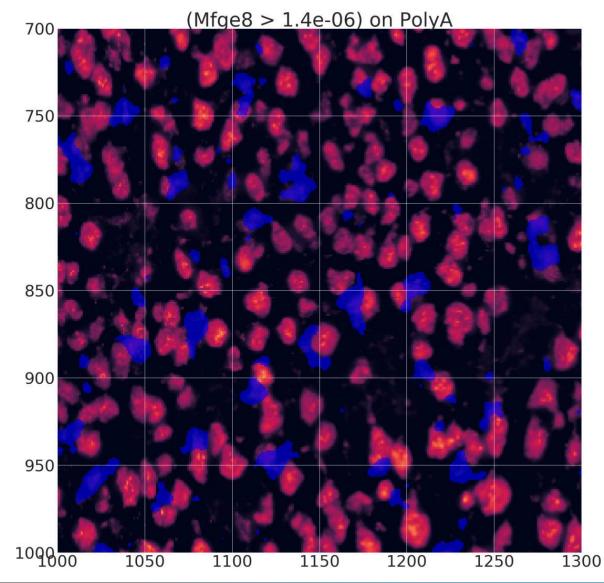
Lars Borm

Simone Codeluppi



27

BERLIN INSTITUTE OF HEALTH

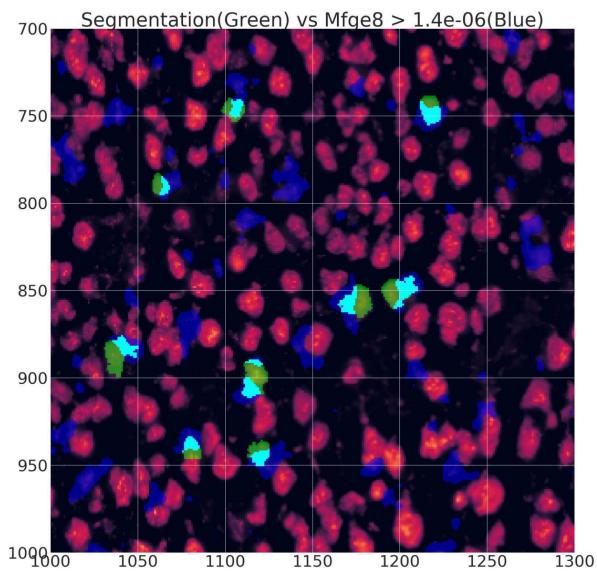


28

& Max Delbrück Center

BERLIN INSTITUTE

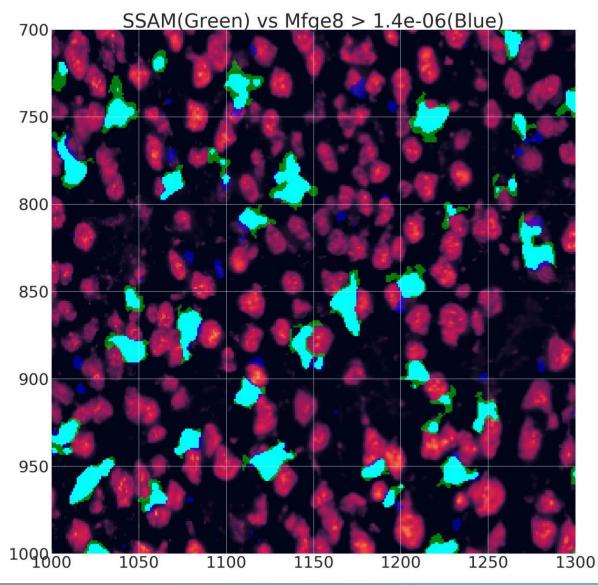
OF HEALTH



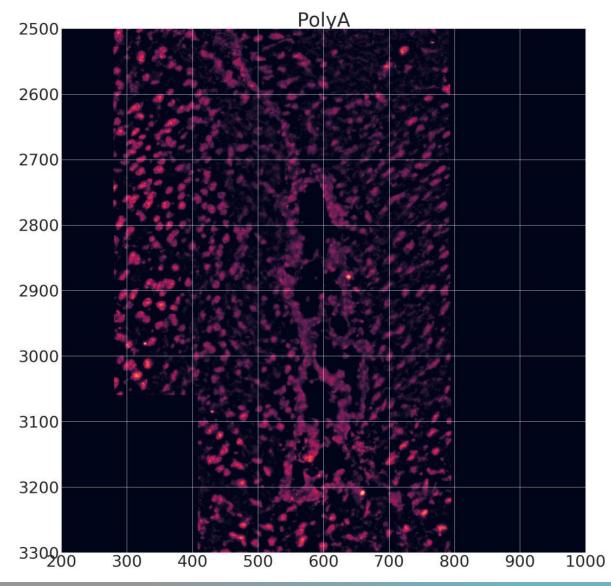
29

BERLIN INSTITUTE

OF HEALTH

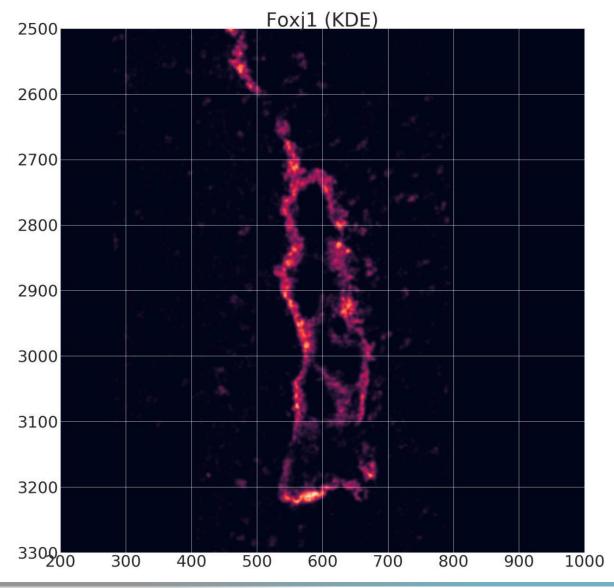


30



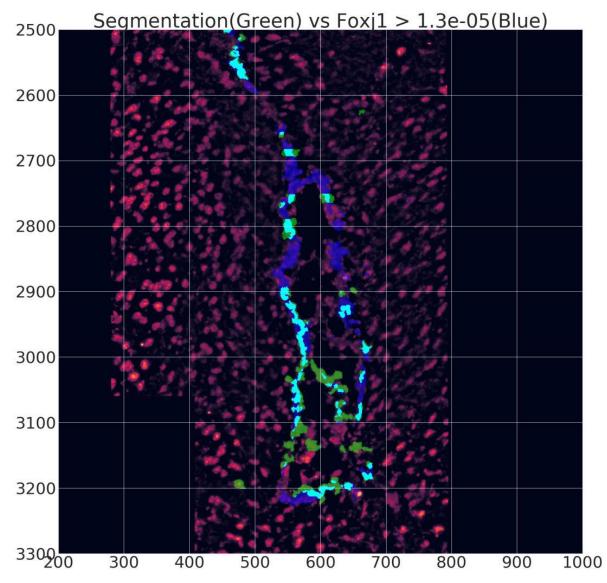
31

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN



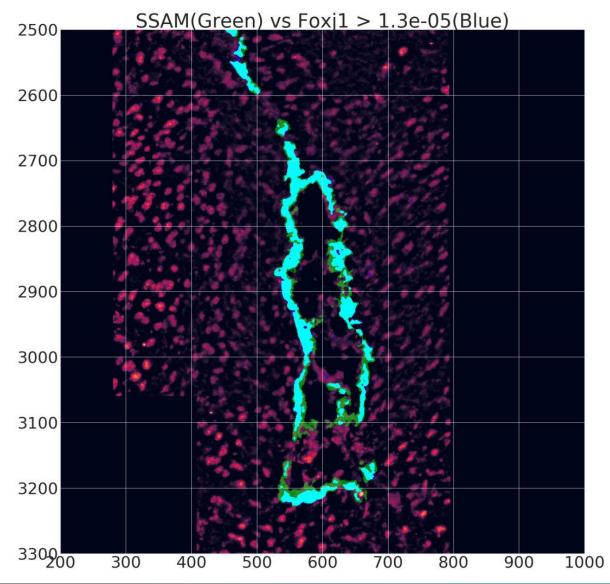
32

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN



33

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN



CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

34

& Max Delbrück Cente

BERLIN INSTITUTE OF HEALTH