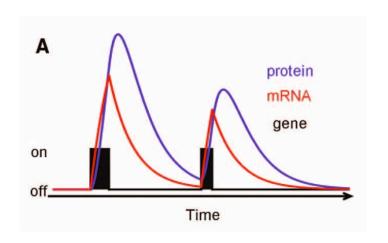
Quality Control of scRNAseq data

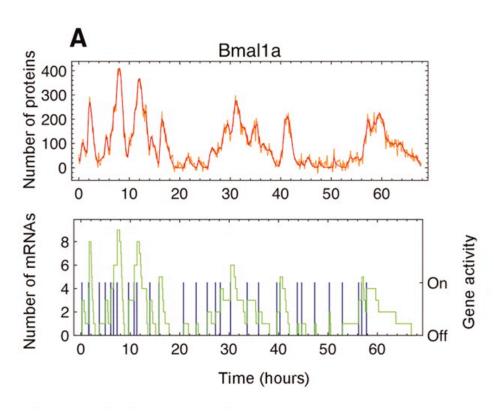
Åsa Björklund asa.bjorklund@scilifelab.se

Outline

- Background on transcriptional bursting & drop-outs
- Experimental setup what could go wrong?
- Spike-in RNAs
- Quality control:
 - Filtering low quality cells
 - Doublet cells
 - Ambient RNA effects
 - Filtering of genes
- PCA for quality control

Transcriptional bursting



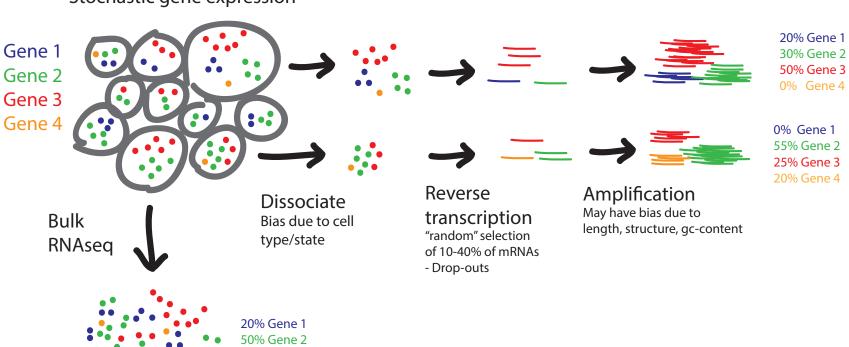


- Burst frequency and size is correlated with mRNA abundance
- Many TFs have low mean expression (and low burst frequency) and will only be detected in a fraction of the cells

Bursting, drop-outs and amplification bias

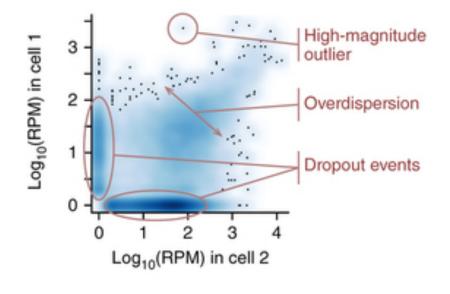
Stochastic gene expression

25% Gene 3 5% Gene 4



Problems compared to bulk RNA-seq

- Amplification bias
- Drop-out rates
- Transcriptional bursting
- Background noise
- Bias due to cell-cycle, cell size and other factors
- Often clear batch effects



Raw data: scRNA-seq analysis overview fastq files Mapping & Data normalization Gene expression estimate Gene set selection Batch effect removal Removal of other Data: QC: confounders **Expression profiles** Remove low Q cells Remove contaminants Clustering methods Visualization / Trajectory Defining cell types/lineages Dimensionality reduction assignment Gene signatures Verification experiments

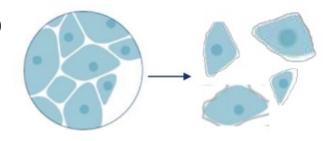
transcription and sequencing

Experimental setup

What could go wrong?

Cell dissociation transcription and sequencing

Experimental setup



It is critical to have healthy whole cells with no RNA leakage. Short time from dissociation to cell!

Tissues that are hard to dissociate:

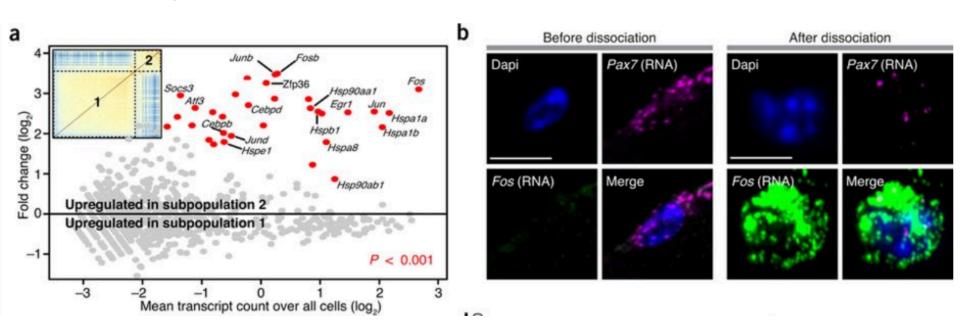
Laser capture microscopy (LCM) Nuclei sorting

PROBLEMS:

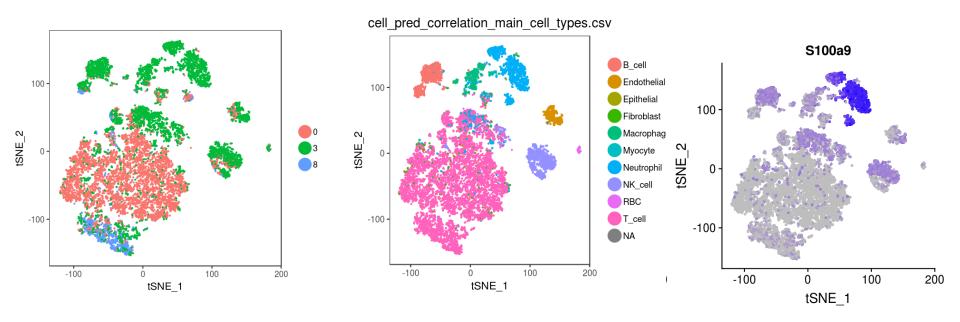
- Incomplete dissociation can give multiple cells sticking together.
- To harsh dissociation may damage cells -> RNA degradation and RNA leakage.
- Leakage of RNA background signal.

Dissociation artifacts

- Dissociation may bias your cell populations
- Dissociation protocols may introduce transcriptional changes.



Ambient RNA

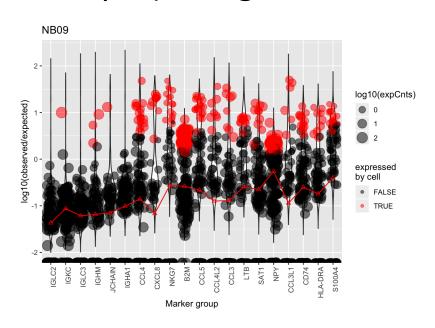


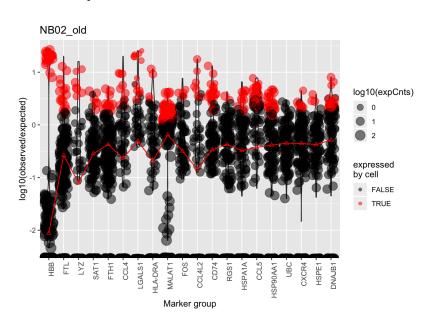
Sample from Day3 have detection of Neutrophil markers in all cells.

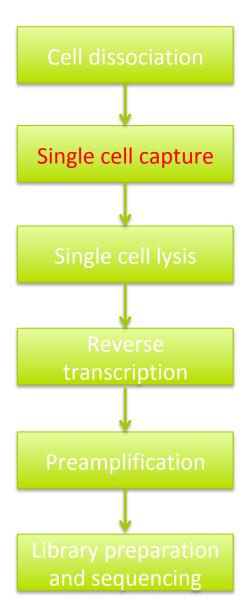
Possibly contamination from ambient RNA.

Ambient RNA

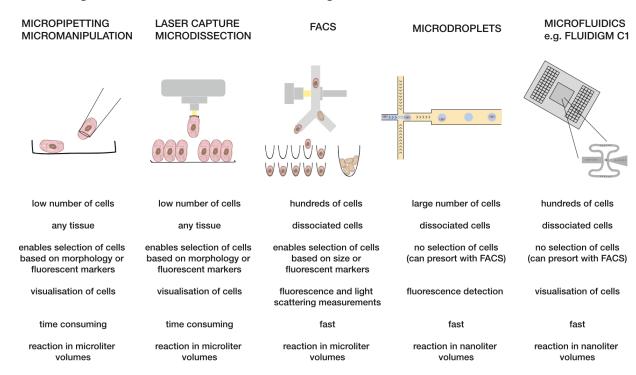
- Using empty droplets, estimate background signal gives warning in cellranger report.
- SoupX (Young MD, BiorXiv 2018)







Experimental setup



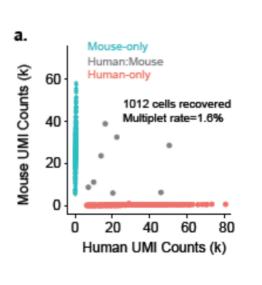
PROBMLEMS:

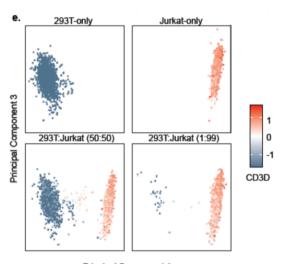
- All these methods may give rise to empty wells/droplets, and also duplicates or multiples of cells.
- Size selection bias for many of the methods dropseq has upper limit for cell size.
- Biased selection of certain celltype(s)
- Long time for sorting may damage the cells

(Kolodziejczyk et al. 2015)

Doublets in scRNAseq

scRNA-seq is not always single-cell



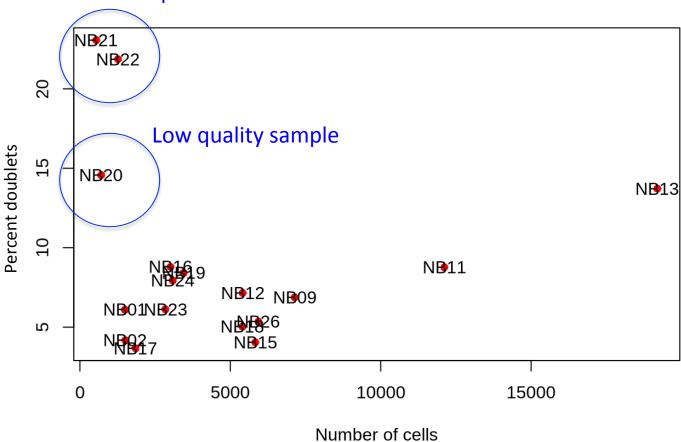


Principal Component 1

Multiplet Rate (%)	# of Cells Loaded	# of Cells Recovered
~0.4%	~870	~500
~0.8%	~1700	~1000
~2.3%	~5300	~3000
~3.9%	~8700	~5000
~7.6%	~17400	~10000

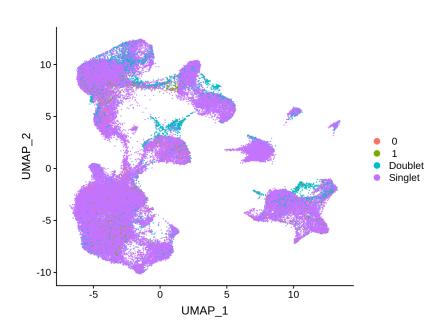
Cell debris may cause doublet signatures

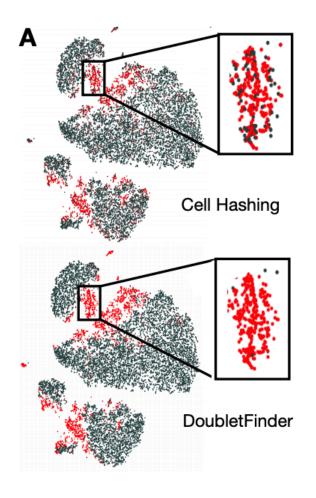
Refrozen samples



Doublets in scRNAseq

- Can be distinct cluster
- Can be a streak between clusters.



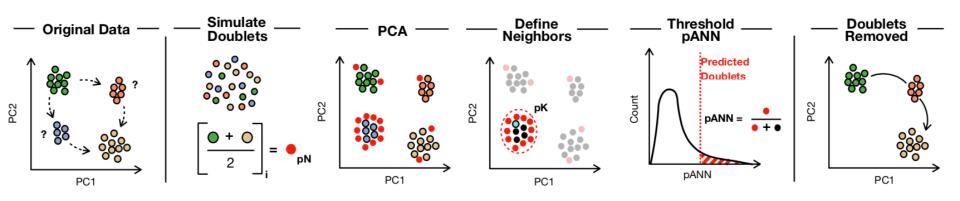


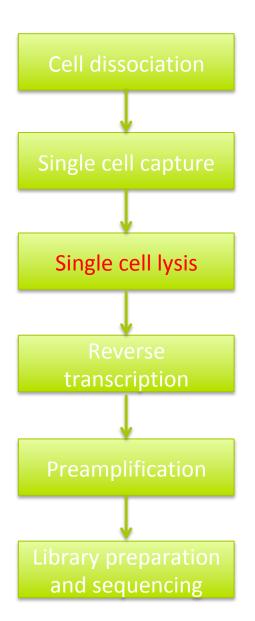
Detecting duplicate/multiple cells

- High number of detected genes or UMIs can be a sign of multiples
 - But, beware so that you do not remove all cells from a larger celltype.
- After clustering check if you have cells with signatures from multiple clusters.
- A combination of those 2 features would indicate duplicates.
- With 10X you should have a feeling for your doublet rate based on how many cells were loaded

Doublet detectors

- DoubletFinder - <u>https://github.com/chris-mcginnis-ucsf/</u> <u>DoubletFinder</u>
- Scrublet https://github.com/AllonKleinLab/scrublet
- DoubletDecon -<u>https://github.com/EDePasquale/DoubletDecon</u>
- DoubletCluster / DoubletCell in Scran





Experimental setup

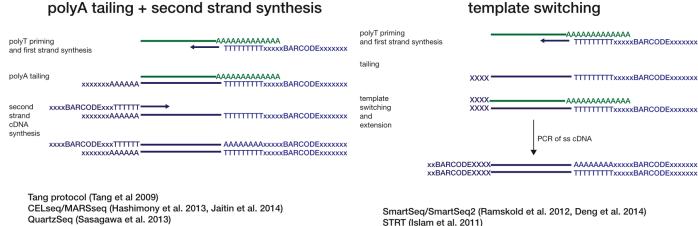
Optimal lysis conditions may vary from celltype to celltype and for nuclei vs cells.

PROBLEMS:

- To harsh lysis conditions may interfere with library prep.
- Different lysis conditions may/may not give nuclear lysis.

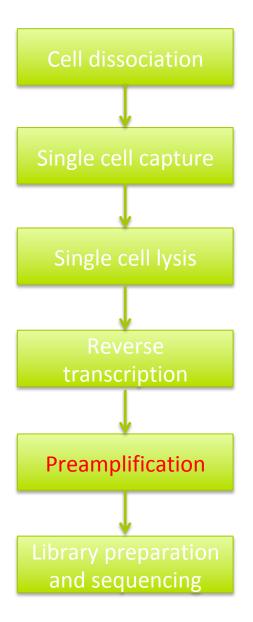
Cell dissociation Reverse transcription and sequencing

Experimental setup

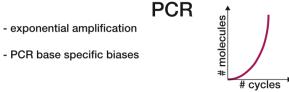


Efficiency of reverse transcription is the key to high sensitivity. Drop-out rate is around 90-60% depending on the method used.

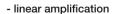
Two libraries with the same method using the same cell type may have very different drop-out rates.



Experimental setup



cycles
Tang protocol (Tang et al. 2009)
STRT (Islam et al. 2011)
SmartSeg/SmartSeg2 (Ramskold et al. 2012, Deng et al. 2014)



- 3' bias due to two rounds of reverse transcription

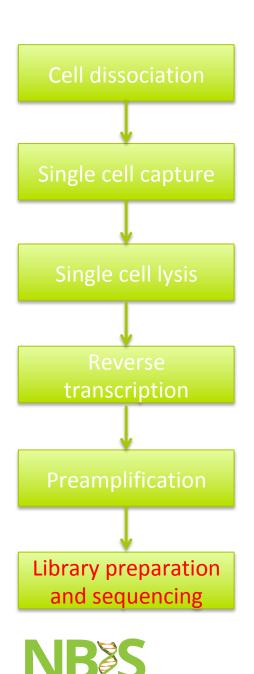
CELseg/MARSseg (Hashimony et al. 2013, Jaitin et al. 2014)

IVT

Any amplification step will introduce a bias in the data.

Methods that uses UMIs will control for this to a large extent, but the chance of detecting a transcript that is amplified more is higher.

Full length methods like SmartSeq2 has no UMIs, so we cannot control for amplification bias.



Experimental setup

Multiplexing of samples will not always be perfect, so the number of reads per cell may vary quite a lot.

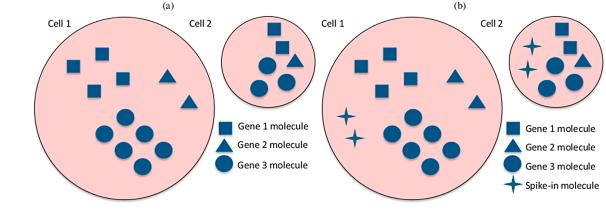
Base calls in the sequencing may be effected by a number of factors:

- Low complexity of library may be an issue whey there are many primer dimers
- Base call quality scores may be effected if there are contaminations in the flow cell

Index swapping

(Kolodziejczyk et al. 2015)

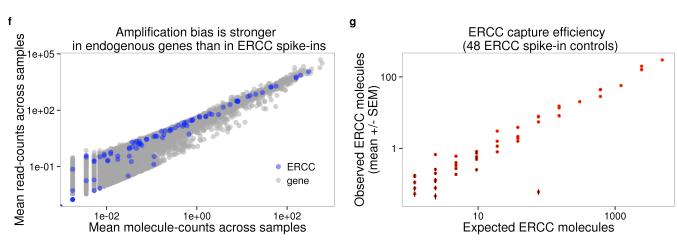
Spike-in RNAs



External molecules added in a known concentration.

- ERCC:
- 92 bacterial RNA species, different lengths, GC contents
- 22 abundance levels, 2 mixes for fold-change accuracy assessment
- SIRV:
- 69 artificial transcripts
- Mimic human genes
- Used for isoforms detection

Spike-in RNAs

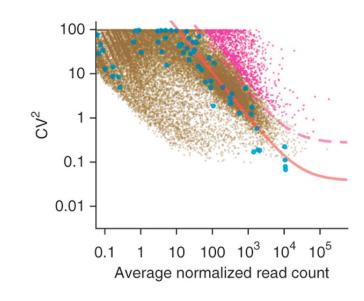


Spike-ins can be used to model:

- Technical noise
- Drop-out rates / capture efficiency
- Starting amount of RNA in the cell
- Data normalization

Problems:

- Spike-ins behave differently to endogenous genes
- Cannot be used in drop-seq methods



(Brennecke et al. *Nature Methods* 2013) (Tung et al. *Scientific Reports* 2017)

- Mapping statistics (% uniquely mapping)
- Fraction of exon mapping reads
- 3' bias for full length methods like SS2
- mRNA-mapping reads
- Number of UMIs/reads
- Number of detected genes
- Spike-in detection
- Mitochondrial read fraction, ribosomal read fraction
- rRNA read fraction
- Pairwise correlation to other cells

- Number of reads
- Mapping statistics (% uniquely mapping)
- Fraction of exon mapping reads
- mRNA-mapping reads (vs other types of genes like rRNA, sRNA, non coding, pseudogenes etc.)

Low number of reads — may not have enough information for that cell.

Bad mapping may be an indication of a failed library prep. Low content of mRNAs will lead to more primer dimers and more spurious mapping and fewer mapping reads.

- Spike-in detection
- Spike-in ratio

If the number of spike-in molecules that are detected is low, this is a clearly failed library prep.

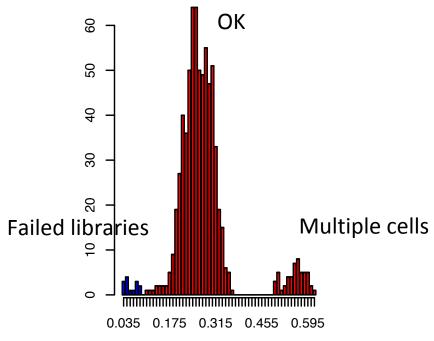
Proportion of cell to spike-in reads is an indication of the starting amount of RNA from the cell. Low amount of cell RNA can indicate breakage or just a smaller cell.

Number of detected genes

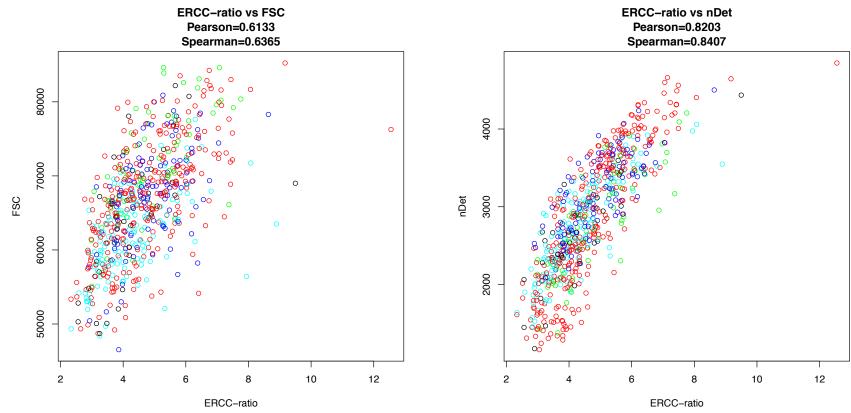
Number of detected genes clearly correlates to the size of the cells, so be careful if you are working with cells with very varying sizes.

High number of detected genes may be an indication of duplicate/multiple cells.

But can also be a larger celltype.



 Cell size, spike-in ratio and number of detected genes are clearly correlated



SciLifeLab

Mitochondrial read fraction

Suggested that when the cell membrane is broken, cytoplasmic RNA will be lost, but not RNAs enclosed in the mitochondria.

High content of mitochondrial RNA may indicate apoptosis.

- Ribosomal RNA read fraction
- Ribosomal protein read fraction

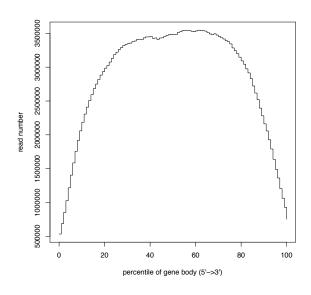
Possible that degradation of RNA leads to more templating of rRNA-fragments.

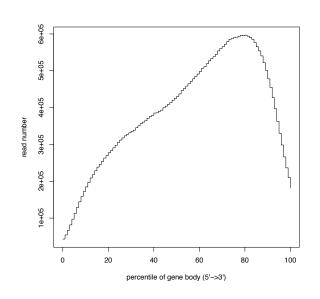
Proportion ribosomal proteins may be an artifact from handling of samples for cells of the same celltype.

3' bias (degraded RNA) – for full length methods like SS2

Not degraded

Degraded



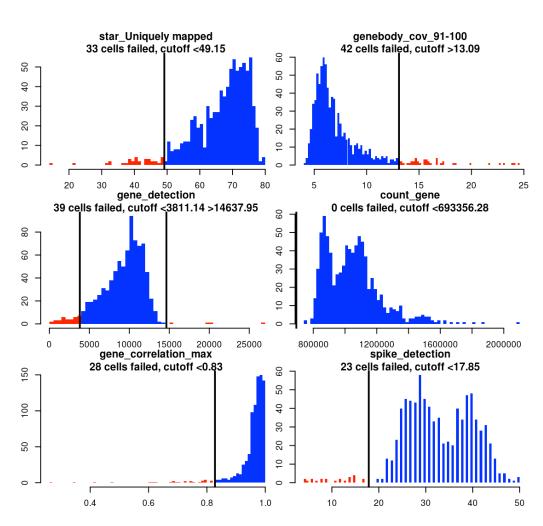


Look at proportion of reads that maps to the 10-20% most 3' end of the transcript

- Number of reads
- Mapping statistics (% uniquely mapping)
- Fraction of exon mapping reads
- mRNA-mapping reads
- 3' bias for full length methods like SS2
- mRNA-mapping reads
- Number of detected genes
- Spike-in detection
- Mitochondrial read fraction
- rRNA read fraction
- Pairwise correlation to other cells

How to filter cells

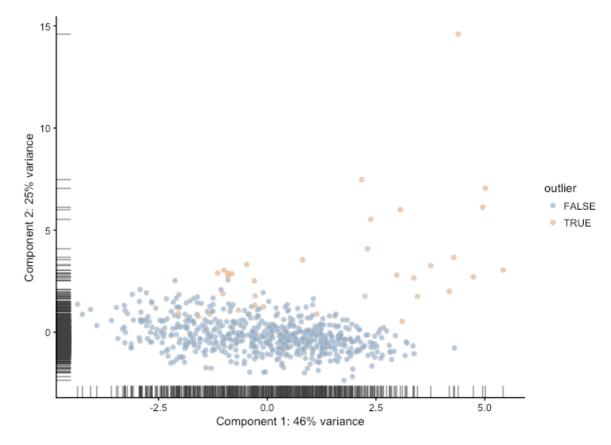
- Normally, most of these qc-metrics will show the same trends, so it could be sensible to use a combination of measures.
- Look at the distributions before deciding on cutoffs.



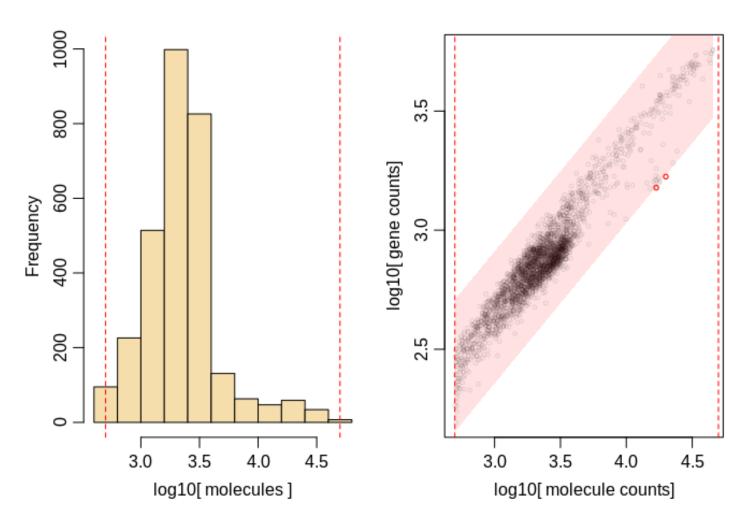
How to filter cells

 Can use PCA based on QC-metrics to identify outlier cells.

(Scater package)



DropSeq - nUMI vs nGene



Deciding on cutoffs for filtering

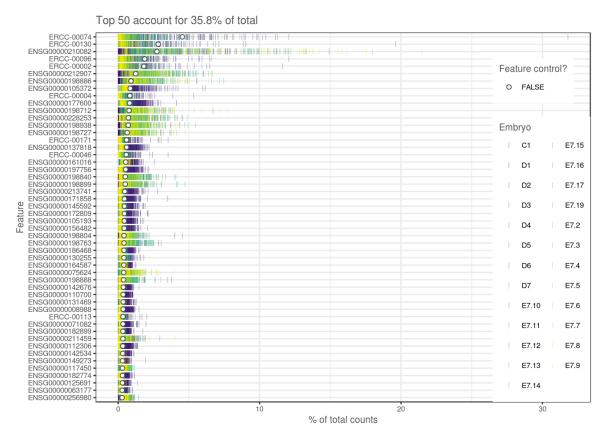
- Do you have a homogeneous population of cells with similar sizes?
- Is it possible that you will remove cells from a smaller celltype (e.g. red blood cells)
- Examine PCA/tSNE before/after filtering and make a judgment on whether to remove more/less cells.

How to filter genes

- In most cases, all genes are not used in dimensionality reduction and clustering.
- Gene set selection based on:
 - Genes expressed in X cells over cutoff Y.
 - Variable genes using spike-ins or whole distribution.
 - Filter out genes with correlation to few other genes
 - Prior knowledge / annotation
 - DE genes from bulk experiments
 - Top PCA loadings

Look at total contribution to expression

 Sometimes individual genes may have very high expression — may be problematic for normalization.



Look at total contribution to expression



 MALAT1 clearly correlates with percent mitochondrial genes in some samples.

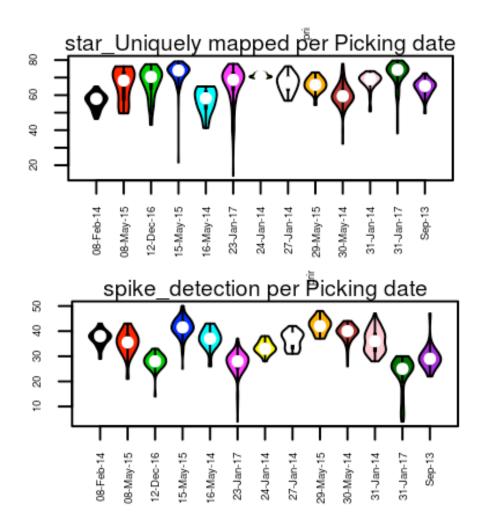
Removal of genes before analysis

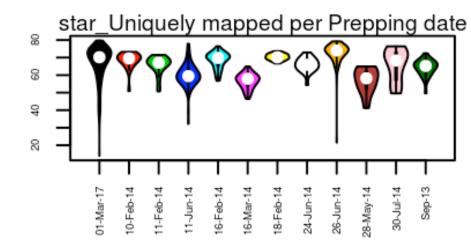
- Mitochondrial encoded genes often mainly technical bias.
- Genes suspected to be technical bias
- Genes that may not contribute to celltype variation (e.g. ribosomal genes)

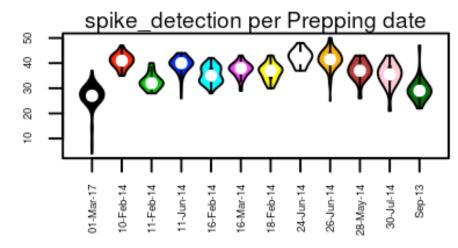
Batch effects

- Can be batch effects per
 - Experiment
 - Animal/Patient/Batch of cells
 - Sort plate
 - Sequencing lane
- Check if QC-measures deviates for any of those measures
- Check in PCA if any PC correlates to batches Scater tutorial

Also check if your different qc-measures are different between batches.

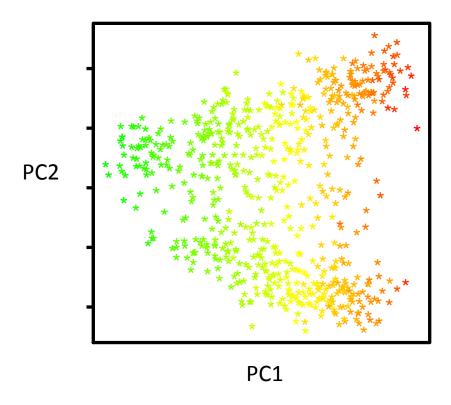




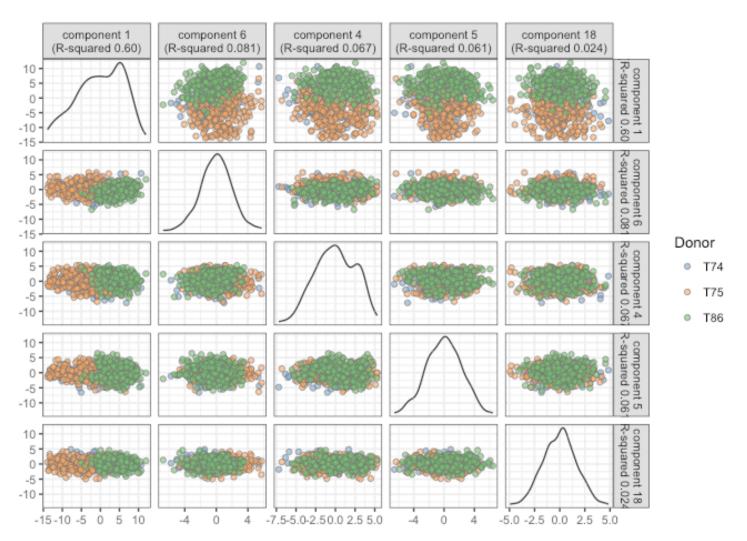


PCA for QC

 One of the first PCs will (always) correlate with number of detected genes

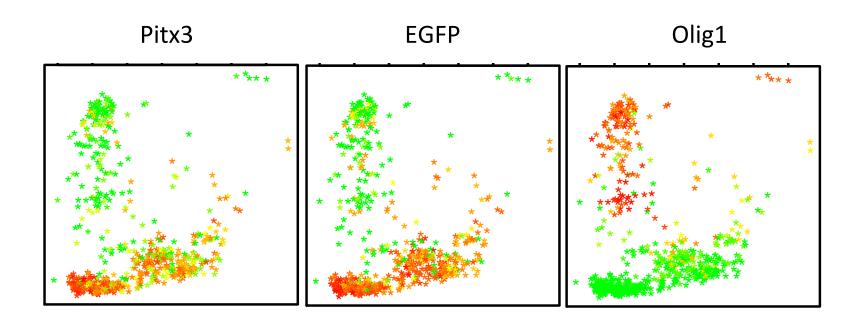


Check for batch effects in PCA



PCA for QC

 PCA can be used to identify contaminant cells when you are sorting for a specific cell type.



Conclusions

- Try to plan your experiment in a way so that the biological signal you are looking for is not confounded by technical artifacts.
- Think about what distribution of cells you are expecting in your dataset when looking at the qcmeasures. When you have homogeneous cells deviant cells will be failed library. Otherwise be careful what you remove.
- Distinguishing duplicate cells is very hard, sometimes it will take some clustering

Always go back to QC-stats after doing clustering/lineage analysis etc.

You may have clusters of low quality cells/doublets!

