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technologies & libraries



  Svensson et al. Nature 
Prorocols (2018)

Evolution of scRNAseq techniques



  Hwang et al. Experimental & 
Molecular Medicine (2018)

Methods for single cell isolation



  Ziegenhain et al. Molecular Cell (2017)

Some scRNAseq strategies



  

NGS max sequencing capabilities:

HiSeq2500 : 2 x 300 bp (rapid run v2)
NovaSeq : 2 x 250 bp

Sequencing cDNA: length limitations



  

Pflug et al. Bioinformatics (2018)

Unique Molecular Identifiers

UMI correction:
1 edit distance can be confidently corrected
Different strategies exists, integration of UMI + CB + mapped read, network based methods.
UMI-tools: Modelling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy 
(Smith et al. Genome Research 2017)



  

fragmentation associated to UMI increases coverage for a given mRNA

In 3’ libraries, actual coverage vary according to the level of duplication of a given cDNA.



  

number of genes

droplet-RNAseq

SMART-seq2

SMART-seq2:
~ 100 cells
~ 1 M RPC

Droplet-based 
(eg. 10x):
~ 10000 cells
~ 50 k RPC

A dichotomous overview of scRNAseq technologies

3’ librairies
UMIfull-length libraries



  

More cells, or more genes?

Bhaduri et al. biorXiv (2017)



  Guillaumet-Adkins et al. 
Genome Biol (2017)

SMARTseq2:droplet-based (10x):

Transcript coverage



  

● 3’ libraries : detection of rearranged TCR is possible in 1-2 % or enriched T cells

● 5’ libraries : detection is possible in 100 % of the cells.

Application: TCRseq



  

Depending on the location of the splice locus + the transcript coverage, 
isoforms can be detected (see velocyto for specific applications).

Application: splicing variants

Arzalluz-Luque et al., Genome Biology (2018)



  

Comparative sensitivity of scRNAseq technologies

Ding, Adiconis, Simmons et al., biorXiv (2019)



  Ziegenhain et al. Molecular Cell (2017)

Comparative sensitivity of scRNAseq technologies



  

Ziegenhain et al. Molecular Cell (2017)

Key point : whatever the sc technology, not detecting any 
transcript is not a proof the gene isn’t expressed.

Drop-out across technologies



  
Ziegenhain et al. Molecular Cell (2017)

A practical consideration



  

primary analysis & data generation



  

QC pre-check: quality of sequenced reads

Positional quality of the sequenced reads (Phred scores). Bottom-left: experiment with a flowcell issue.
Inspecting the quality of the sequencing (eg. fastqc, reads above Q30 in CR report…) is recommended.



  

Cell calling in droplet-based technologies



  

Mapping or transcript quantification

mapping engines:
● tophat, bowtie2, STAR

alignment-free transcript quantification:
● RNASkim, eXpress, kallisto, salmon



  

Transcript mapping (eg. STAR)

1. Sequenced reads (fastq file) + reference genome = alignements (SAM/BAM file)
2. Feature quantification (eg. FeatureCounts, HTseq)



  

Transcript quantification, quasi-mapping (eg. Salmon)

Patro et al., Nature Biotechnology, 2014 Bray et al., arXiv, 2015

Start : fastq + reference 
transcriptome
result :

1. Sequenced reads (fastq file) + reference transcriptome = count matrix (usually TPM)



  

RNAseq expression units

With:

● Xi: observed count

● li: length of the transcript

● N number of fragments sequenced



  

Summary of primary analysis

(base calling)

sequencing QC

cell calling

alignement + 
expression counting

OR transcript quantification

COUNT MATRIX

UMI deduplication

.rds, .h5, .csv, ...

(BCL folders)

.fastq

(.sam .bam)

quality trimming

→ downstream analysis



  

downstream applications



  

Data partitioning and cell clustering

emat <- Matrix::Matrix(data=extraDistr::rzinb(25000*1000, 50, 0.95, 0.75) \
, nrow=25000, ncol=1000, sparse=TRUE)

emat[1:10,1:5]

## 10 x 5 sparse Matrix of class "dgCMatrix"

##        cell1 cell2 cell3 cell4 cell5
## gene1      .     2     .     .     .
## gene2      .     2     .     3     .
## gene3      .     .     .     .     2
## gene4      7     .     .     .     3
## gene5      1     .     .     .     1
## gene6      .     .     .     .     6
## gene7      .     .     .     .     3
## gene8      .     .     2     .     .
## gene9      .     3     .     .     .
## gene10     .     3     .     .     6

graph-based clustering, Seurat v3, resolution=0.8



  

Application: cell heterogeneity

● How to define a cell subset? Correlation with a cell cluster?
● Any matrix can be mathematically partitioned
● A discrete partitioning of the data is not always desirable: continuous 

scales are more adapted to dynamic processes such as cell 
differentiation.



  

Application: transcriptional dynamics and differentiation processes

Chen, Albergante et al. Nature 
Communications (2019)



  

Application: identification of gene regulatory modules (SCENIC, Aerts lab)

Aibar et al. Nature Methods (2017)



  Liu, Liu, Quintero, Wu, Yuan et al. Nature 
Communication (2019)

scCAT-seq : mild lysis approach 
and a physical dissociation 
strategy to separate the nucleus 
and cytoplasm of each single 
cell.
The supernatant cytoplasm 
component is subjected to the 
Smart-seq2 method.
The precipitated nucleus is then 
subjected to a Tn5 transposase-
based and carrier DNA-mediated 
protocol to amplify the fragments 
within accessible regions.

Application: scRNAseq & scATACseq



  

experimental and technical biases



  

Hwang et al. Experimental & 
Molecular Medicine (2018)

Observed transcript counts are the combination of factors



  

Baran-Gale et al. Briefings in 
Functional Genomics (2018)

Confounded designs in scRNAseq

Experiments on 
human samples can 
hardly be pooled.

Due to the costs and 
experimental 
constrains, droplet-
seq experiments are 
frequently 
confounded in their 
design.



  Stoeckius & Satija, biorXiv, 2017

barcoded (HashTagOligo)
1 antibody per batch/pool (eg. ubiquitous epitope)
1 HTO per sample

Using cell hashing to resolve confounding experimental designs



  

doublets

doublets cells are defined by co-expression of both T- and APC- restricted genes (an 
immune synapse has been captured)

Doublets in heterogenous samples



  

Estimating the appropriate sequencing depth

Saturation point is never 
achieved in scRNAseq



  

human sample - myeloid cells murine sample - lymphoid cells

Transcripts coding for Ribosomal Proteins are abundant in cells



  Saxton et al. Cell (2018)

Induction of RP genes: Hi-glucose, 
Insulin, GFs (culture medium+SVF)

Inhibition of RP genes: nutrient 
deprivation, hypoxia, DNA damage

Ribosome biogenesis is quickly regulated by the cellular environment



  

NT NT NTT T T NT NT NTT T T NT NT NTT T T

pre-enriched
direct sort

Technical artifacts: effect(s) of sample processing on gene detection



  

Batch effect in technical replicates (mouse littermates)



  Nguyen et al. Frontiers in Cell 
Developmental Biology (2018)

Artifacts, variations and technical limitations in scRNAseq experiments



  

● scRNAseq has inherent technological limitations:

– data are noisy (dropouts)
– lowly expressed genes can remains undetected
– samples can be contaminated by unexpected cell types
– samples will contain (homotypic and heterotypic) doublets
– only specific experimental set-ups can resolve confounding design
– replicates without any technical/batch effect are (very) unlikely

Summary (1)



  

● key points to consider during pre-processing of scRNAseq:

– a good understanding of the nature of the sample is essential 
(sampling conditions, preparation, purity)

– identifying the source of technical effects helps resolving them
– before any correction of multiple batches, an individual exploration of 

single samples is highly recommended

Summary (2)
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