Removal of confounding factors

Bishwa Ghimire

Single cell RNA-seq data analysis with R CSC, Espoo 27.05.2019

Confounding factors/confounders

- A third variable correlated with both the dependent variable and the independent variable.
- Distortion of true effect of exposure on a disease by third factor/variable.
- The factor can cause over/under estimation of true effect. In other words it biases our study.
- Example:
 - Lets say alcoholism has true effect on oral cancer.
 - There is different level of effect on oral cancer for people who smoke and who don't.
 - People who smoke are likely to drink alcohol.

Confounding factors

Confounder: distorts the relationship between alcohol consumption and oral cancer.

Adjusting confounding factors

- Experimental design
 - Randomization : Randomly assigning experimental units to treatment groups. It balances known and unknown confounders. Limited applicabality.
 - Restriction : Using only one category for confoundings. Eg. Taking only smokers. Study results can not be generalized.
 - Matching : Making a match of a experimental unit for different treatment groups.

Adjusting confounding factors

- Data analysis
 - Multiple linear regression
 - Logistic regression
 - Analysis of Covariance

Equation of the line $y = b_0 + b_1 x$

• R-squared (coefficient of determination)

X

	BRCA1	PAX3	hours
cell-1	42	52	4
cell-2	50	43	4
cell-3	44	92	7
cell-4	62	36	7
cell-5	56	31	8
cell-6	50	21	9

$$y = b_0 + b_1 x$$

 $y = 22.42 + 3.93 x$

BRCA1 = 22.42 + 3.92 hours

Multiple linear regression

- Extension of simple linear regression
- Association of two or more independent variables to one dependent variable.

$$y = b_0 + b_1 x_1 + b_2 x_2$$

	BRCA1	PAX3	hours	age.in.mth
cell-1	42	52	4	29
cell-2	50	43	4	73
cell-3	44	92	7	41
cell-4	62	36	7	52
cell-5	56	31	8	60
cell-6	50	21	9	64

age.in.mth

Multiple linear regression

Including only *hours* in a model

 $y = b_0 + b_1 x$ y = 22.42 + 3.93 xBRCA1 = 22.42 + 3.39 hours

 $\frac{3.39 - 2.64}{2.64} = 0.284 = 28.4\%$ Regression coeff. decreased by 28.4%

• Including both *hours* and *age.in.mth* in a model

 $y = b_0 + b_1 x_1 + b_2 x_2$ $y = 16.19 + 2.64 x_1 + 0.28 x_2$ BRCA1 = 16.19 + 2.64 hours + 0.23 age.in.mth

 Effect of x₂ is regressed out by including it in the model

Regressing out in Seurat

ScaleData(seuratObject,

vars.to.regress = c("nCount_RNA",

- ScaleData() calls RegressOutResid() which returns residuals of a regression model
- Returned residuals are later scaled
- *vars.to.regress* should be in *seuratObject@meta.data*

	orig.ident	nCount_RNA	nFeature_RNA
Prog_013	Prog	2563089	10211
Prog_019	Prog	3030620	9991
Prog_031	Prog	1293487	10192
Prog_037	Prog	1357987	9599

Other tools

- ScLVM (beta pre-release)
 - Designed for cell-cycle variation correction.
 - Also correction of other confounding variables.
- ccRemover (stable version from CRAN).
 - "ccRemover outperforms scLVM slightly."
- scTransform
 - Part of Seurat

Thank you!